×

Existence of the unique strong solution for a class of non-Newtonian fluids with vacuum. (English) Zbl 1142.76008

Summary: We obtain local existence and uniqueness of solutions for a class of non-Newtonian fluids with vacuum on one-dimensional bounded intervals. The important point is that we allow the initial vacuum.

MSC:

76A05 Non-Newtonian fluids
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] O. A. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in “Boundary Value Problems of Mathematical Physics V”, Amer. Math. Soc., Providence, RI, 1970.
[2] S. Whitaker, “Introduction to fluid mechanics”, Krieger, Melbourne, FL, 1986.
[3] J. Nečas and M. Šilhavý, Multipolar viscous fluids, Quart. Appl. Math. 49 (1991), no. 2, 247 – 265. · Zbl 0732.76003 · doi:10.1090/qam/1106391
[4] Hamid Bellout, Frederick Bloom, and Jindřich Nečas, Phenomenological behavior of multipolar viscous fluids, Quart. Appl. Math. 50 (1992), no. 3, 559 – 583. · Zbl 0759.76004 · doi:10.1090/qam/1178435
[5] J. Málek, J. Nečas, M. Rokyta, and M. R\ocirc užička, Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation, vol. 13, Chapman & Hall, London, 1996. · Zbl 0851.35002
[6] Š. Matuš\ocirc u-Nečasová and M. Medvid’ová-Lukáčová, Bipolar isothermal non-Newtonian compressible fluids, J. Math. Anal. Appl. 225 (1998), no. 1, 168 – 192. · Zbl 0951.76004 · doi:10.1006/jmaa.1998.6014
[7] Šárka Matuš\ocirc u-Nečasová and Mária Medvid’ová, Bipolar barotropic non-Newtonian fluid, Comment. Math. Univ. Carolin. 35 (1994), no. 3, 467 – 483. · Zbl 0809.76001
[8] J. Nečas and A. Novotný, Some qualitative properties of the viscous compressible heat conductive multipolar fluid, Comm. Partial Differential Equations 16 (1991), no. 2-3, 197 – 220. · Zbl 0777.35061 · doi:10.1080/03605309108820757
[9] J. Nečas, A. Novotný, and M. Šilhavý, Global solution to the compressible isothermal multipolar fluid, J. Math. Anal. Appl. 162 (1991), no. 1, 223 – 241. · Zbl 0757.35060 · doi:10.1016/0022-247X(91)90189-7
[10] Hyeong-Ohk Bae, Existence, regularity, and decay rate of solutions of non-Newtonian flow, J. Math. Anal. Appl. 231 (1999), no. 2, 467 – 491. · Zbl 0920.76007 · doi:10.1006/jmaa.1998.6242
[11] Rodolfo Salvi and Ivan Straškraba, Global existence for viscous compressible fluids and their behavior as \?\to \infty , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), no. 1, 17 – 51. · Zbl 0785.35074
[12] Hi Jun Choe and Hyunseok Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differential Equations 190 (2003), no. 2, 504 – 523. · Zbl 1022.35037 · doi:10.1016/S0022-0396(03)00015-9
[13] Yonggeun Cho, Hi Jun Choe, and Hyunseok Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9) 83 (2004), no. 2, 243 – 275 (English, with English and French summaries). · Zbl 1080.35066 · doi:10.1016/j.matpur.2003.11.004
[14] Tai-Ping Liu and Tong Yang, Compressible Euler equations with vacuum, J. Differential Equations 140 (1997), no. 2, 223 – 237. · Zbl 0890.35111 · doi:10.1006/jdeq.1997.3281
[15] Tai-Ping Liu, Zhouping Xin, and Tong Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Systems 4 (1998), no. 1, 1 – 32. · Zbl 0970.76084
[16] Tetu Makino, Seiji Ukai, and Shuichi Kawashima, Sur la solution à support compact de l’équations d’Euler compressible, Japan J. Appl. Math. 3 (1986), no. 2, 249 – 257 (French, with English summary). · Zbl 0637.76065 · doi:10.1007/BF03167100
[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Providence, RI, 1968.
[18] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Springer-Verlag, New York, 1994. · Zbl 0949.35004
[19] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. · Zbl 0588.35003
[20] Roger Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.