×

zbMATH — the first resource for mathematics

Symmetric functions, tableaux decompositions and the fermion-boson correspondence. (English) Zbl 1185.05148
Summary: An extended fermion-boson correspondence is introduced for skew Schur functions. Certain members of a general class of recently-developed determinantal forms, based on outer strip decompositions of skew shape tableaux, are described in the context of Wick’s theorem for ‘composite’ operators.
MSC:
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kac, V.G.; Kazhdan, D.A.; Lepowsky, J.; Wilson, R.L., Realization of the basic representations of the Euclidean Lie algebras, Adv. in math., 42, 83-112, (1981) · Zbl 0476.17003
[2] Frenkel, I.B.; Kac, V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. math., 62, 23-66, (1980) · Zbl 0493.17010
[3] Segal, G., Unitary representations of some infinite-dimensional groups, Commun. math. phys., 80, 301-342, (1981) · Zbl 0495.22017
[4] Frenkel, I.B., Two constructions of affine Lie algebra representations and the fermion-boson correspondence in quantum field theory, J. funct. anal., 44, 259-327, (1981) · Zbl 0479.17003
[5] Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. RIMS, Kyoto univ., 19, 943-1001, (1983) · Zbl 0557.35091
[6] Jing, N., Vertex operators, symmetric functions and the spin group γn, J. alg., 138, 340-398, (1991) · Zbl 0727.20011
[7] Jing, N., Vertex operators and Hall-Littlewood symmetric functions, Adv. math., 87, 226-248, (1991) · Zbl 0742.16014
[8] Jarvis, P.D.; Yung, C.M., The Schur function realization of vertex operators, Lett. math. phys., 26, 115-122, (1992) · Zbl 0774.17031
[9] Jarvis, P.D.; Yung, C.M., Vertex operators and composite supersymmetric S-functions, J. phys. A: math. gen., 26, 1881-1900, (1993) · Zbl 0781.05052
[10] Jarvis, P.D.; Yung, C.M., Symmetric functions and the KP and BKP hierarchies, J. phys. A: math. gen., 26, 5905-5922, (1993) · Zbl 0809.35110
[11] Baker, T.H.; Jarvis, P.D.; McAnally, D.S.; Yung, C.M., Symmetric functions, vertex operators and applications, (), 254-258 · Zbl 0903.05050
[12] Kerov, S.V., Hall-Littlewood functions and orthogonal polynomials, Funct. anal. appl., 25, 65-66, (1991) · Zbl 0760.05090
[13] Baker, T.H., Symmetric functions and infinite-dimensional algebras, () · Zbl 0851.05096
[14] You, Y., On some identities of Schur Q-functions, J. alg., 145, 349-377, (1992) · Zbl 0746.17013
[15] Jarvis, P.D.; Yung, C.M., Determinantal forms for composite Schur and Q-functions via the boson-fermion correspondence, J. phys. A: math. gen., 27, 903-914, (1994) · Zbl 0812.05068
[16] Baker, T.H., Symmetric function products and plethysms and the boson-fermion correspondence, J. phys. A: math. gen., 28, 589-606, (1995) · Zbl 0851.05096
[17] Hamel, A.M.; Goulden, I.P., Planar decompositions of tableaux and Schur function determinants, Europ. J. of combin, 16, 461-477, (1995) · Zbl 0832.05097
[18] Hamel, A.M., Pfaffians and determinants for Schur Q-functions, Journal of combinatorial theory A, 75, 328-340, (1996) · Zbl 0858.05098
[19] Hamel, A.M., Determinantal forms for symplectic and orthogonal Schur functions, Can. J. math., 49, 263-282, (1997) · Zbl 0873.05077
[20] Macdonald, I.G., Symmetric functions and Hall polynomials, (1979), Oxford University Press Oxford · Zbl 0487.20007
[21] Littlewood, D.E., The theory of group characters, (1950), Oxford University Press Oxford · Zbl 0011.25001
[22] Lascoux, A.; Pragacz, P., Équerres et fonctions de Schur, C.R. acad. sci. Paris, Série I, math, 299, 955-958, (1984) · Zbl 0579.05012
[23] Lascoux, A.; Pragacz, P., Ribbon Schur functions, Europ. J. combin., 9, 561-574, (1988) · Zbl 0681.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.