zbMATH — the first resource for mathematics

The Schur function realization of vertex operators. (English) Zbl 0774.17031
Summary: We present a realization of untwisted vertex operators in terms of operations on Schur functions. Calculations of matrix elements and traces of products of vertex operators are performed using results from the classical theory of symmetric functions. The concepts of compound, composite and supersymmetric Schur functions naturally appear in this context. Furthermore, a trace formula for a product of vertex operators turns out to be a generalization of a Macdonald identity reformulated in terms of Schur functions.

17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
05E05 Symmetric functions and generalizations
81T05 Axiomatic quantum field theory; operator algebras
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI
[1] Fubini S. and Veneziano G., Nuovo Cimento A 67, 29 (1970); Ann. Phys. 63, 12 (1971). · doi:10.1007/BF02728411
[2] Lepowsky J., Mandelstam S., and Singer I. M. (eds.), Vertex Operators in Mathematics and Physics, MSRI Publications Vol. 3, Springer, New York, 1985. · Zbl 0549.00013
[3] Kac, V. G., Infinite Dimensional Lie Algebras, 3rd edn., Cambridge University Press, 1990. · Zbl 0716.17022
[4] Frenkel I. B., Lepowsky J., and Meurman A., Vertex Operator Algebras and the Monster, Academic Press, New York, 1988. · Zbl 0674.17001
[5] Frenkel I. B. and Jing N., Proc. Natl. Acad. Sci. U.S.A. 85, 9373 (1988). · Zbl 0662.17006 · doi:10.1073/pnas.85.24.9373
[6] Belavin A. A., Polyakov A. M., and Zamolodchikov A. B., Nuclear Phys. B241, 333 (1984); Dotsenko, V. and Fateev, V. A., Nuclear Phys. B240, 312 (1984). · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[7] Date E., Jimbo M., Kashiwara M., and Miwa T., Publ. RIMS Kyoto Univ. 18, 1077 (1982). · Zbl 0571.35103 · doi:10.2977/prims/1195183297
[8] Pressley, A. and Segal, G., Loop Groups, Oxford University Press, 1986. · Zbl 0618.22011
[9] Jing N., J. Algebra 81, 340 (1991); Adv. in. Math. 87, 226 (1991). · Zbl 0727.20011 · doi:10.1016/0021-8693(91)90177-A
[10] Littlewood, D. E., The Theory of Group Characters, Oxford University Press, 1940. · JFM 66.0093.02
[11] MacDonald, I. G., Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. · Zbl 0487.20007
[12] King R. C., J. Phys. A 14, 429 (1975). · Zbl 0301.20029 · doi:10.1088/0305-4470/8/4/004
[13] King R. C., Ars. Combin. 16A, 269 (1983).
[14] King R. C., in D.Stanton (ed), Invariant Theory and Tableaux, IMA Vol. Math. Appl. 19, Springer, New York/Berlin, 1990.
[15] MacDonald I. G., Invent. Math. 15, 91 (1972). · Zbl 0244.17005 · doi:10.1007/BF01418931
[16] Chihara T., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. · Zbl 0389.33008
[17] Tsukada H., Mem. Amer. Math. Soc. 444, 1 (1991).
[18] Jarvis, P. D. and Yung, C. M., in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.