×

Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. (English) Zbl 1225.74112

Summary: A finite element procedure for modeling crystalline nanostructures such as nanowires is proposed. The size effects exhibited by nanoobjects are captured by taking into account a surface energy, following the classical Gurtin – Murdoch surface elasticity theory. An appropriate variational form and a finite element approach are provided to model and solve relevant problems numerically. We describe a simplified technique based on projection operators for constructing the surface elements. The methodology is completed with a computational procedure based on ab initio calculations to extract elastic coefficients of general anisotropic surfaces. The FEM continuum model is validated by comparisons with complete ab initio models of nanowires with different diameters where size-dependent mechanical properties are observed. The FEM continuum model can then be used to model similar nanostructures in ranges of sizes or geometries where analytical or atomistic model is limited. The validated model is applied to the analysis of size effects in the bending of an AlN nanowire.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Agrawal, R.; Peng, B.; Gdoutos, E. E.; Espinosa, H. D., Elasticity size effects in ZnO nanowires – a combined experimental-computational approach, Nano Lett., 8, 11, 3668-3674 (2008)
[2] Arnold, M. S.; Avouris, P.; Pan, Z. W.; Wang, Z. L., Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B, 107, 659-663 (2003)
[3] Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G., Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett., 82, 4806-4808 (2003)
[4] Born, M., On the stability of crystals, Proc. Cambridge Philos. Soc., 36, 160-172 (1940) · JFM 66.1180.02
[5] Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.; Szostak, K.; Beguin, F.; Blau, W. J., Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area, Nano Lett., 4, 353-356 (2004)
[6] Catti, M.; Noel, Y.; Dovesi, R., Full piezoelactric tensor of wurtzite and zinc blende ZnO and ZnS by first-principles calculations, J. Phys. Chem. Solids, 64, 2183-2190 (2003)
[7] Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J., Size dependence of Young’s modulus in ZnO nanowires, Phys. Rev. Lett., 96, 075505 (2006)
[8] Chen, T.; Chiu, M.-S.; Weng, C.-N., Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids, J. Appl. Phys., 100, 074308 (2006)
[9] Chen, W.-H.; Cheng, H.-C.; Hsu, Y.-C.; Uang, R.-H.; Hsu, J.-S., Mechanical material characterization of Co nanowires and their nanocomposites, Compos. Sci. Technol., 68, 2288-3395 (2008)
[10] Cheng, Y.; Xiong, P.; Fields, L.; Zheng, J. P.; Yang, R. S.; Wang, Z. L., Intrinsic characteristics of semi conducting oxide nanobelts field-effect transistors, Appl. Phys. Lett., 89, 093114 (2006)
[11] Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81, 1869-1871 (2002)
[12] Craighead, H. G., A nano electromechanical systems, Science, 290, 1532-1535 (2000)
[13] Cuenot, S.; Frétigny, C.; Demoustier-Champagne, S.; Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phys. Rev. B, 69, 165410 (2004)
[14] Dai, L.; Cheong, W. C.D.; Sow, C. H.; Lim, C. T.; Tan, V. B.C., Molecular dynamics simulation of ZnO nanowires: size effects, defects, and super ductility, Langmuir, 26, 2, 1165-1171 (2010)
[15] Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy its effects on the elastic behavior of nano-sized particles, wires and film, J. Mech. Phys. Solids, 53, 1827-1854 (2005) · Zbl 1120.74683
[16] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D’Arco, M. Llunell, CRYSTAL06 User’s Manual, University of Torino, Torino, 2006; R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D’Arco, M. Llunell, CRYSTAL06 User’s Manual, University of Torino, Torino, 2006
[17] Duan, H. L.; Wang, J.; Huang, Z. P.; Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53, 7, 1574-1596 (2005) · Zbl 1120.74718
[18] Duan, H. L.; Wang, J.; Huang, Z. P.; Karihaloo, B. L., Eshelby formalism for nano-inhomogeneities, Proc. Roy. Soc. A, 461, 3335-3353 (2005) · Zbl 1370.74068
[19] Duan, H. L.; Yi, X.; Huang, Z. P.; Wang, J., A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework, Mech. Mater., 39, 81-95 (2007)
[20] Edelsbrunner, H.; Mücke, E., Three-dimensional alpha-shapes, ACM Trans. Graph., 13, 43-72 (1994) · Zbl 0806.68107
[21] Ekinci, K. L.; Roukes, M. L., Nanoelectromechanical systems, Rev. Sci. Instrum., 76, 061101 (2005)
[22] Feibelman, P. J., Pulay-type formula for surface stress in a local-density-functional, linear combination of atomic orbital, selectronic-structure calculation, Phys. Rev. B, 44, 3916-3925 (1991)
[23] Fish, J.; Chen, W., Discrete-to-continuum bridging based on multigrid principles, Comput. Methods Appl. Mech. Engrg., 193, 1693-1711 (2004) · Zbl 1079.74503
[24] Gatti, C.; Saunders, V. R.; Roetti, C., Crystal-field effects on the topological properties of the electron-density in molecular-crystals - The case of urea, J. Chem. Phys., 101, 10686-10696 (1994)
[25] S.-T. Gu, Contributions to the modelling of imperfect interfaces and to the homogenization of heterogeneous materials, Ph.D. Thesis in French, Université Paris-Est, France, 2008.; S.-T. Gu, Contributions to the modelling of imperfect interfaces and to the homogenization of heterogeneous materials, Ph.D. Thesis in French, Université Paris-Est, France, 2008.
[26] Gurtin, M. E.; Murdoch, A. I., Continuum theory of elastic-material surfaces, Arch. Ration. Mech. Anal., 57, 4, 291-323 (1975) · Zbl 0326.73001
[27] Hamilton, J. C.; Wolfer, W. G., Theories of surface elasticity for nanoscale objects, Surf. Sci., 603, 1284-1291 (2009)
[28] Huang, Y.; Bai, X.; Zhang, Y., In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles, J. Phys.: Condens. Matter, 18, L179-L184 (2006) · Zbl 1091.35091
[29] Hughes, W. L.; Wang, Z. L., Nanobelts as nanocantilevers, Appl. Phys. Lett., 82, 2886-2888 (2003)
[30] Iwanaga, H.; Kunishige, A.; Takeuchi, S., Anisotripic thermal expansion in wurtzite-type crystals, Phys. Rev. B, 24, 5634 (1981)
[31] Levine, I. N., Quantum Chemistry (2000), Prentice-Hall: Prentice-Hall New Jersey
[32] Javili, A.; Steinmann, P., A finite element framework for continua with boundary energies. Part I: The two-dimensional case, Comput. Methods Appl. Mech. Engrg., 198, 2198-2208 (2009) · Zbl 1227.74075
[33] Javili, A.; Steinmann, P., A finite element framework for continua with boundary energies. Part II: The three-dimensional case, Comput. Methods Appl. Mech. Engrg., 199, 755-765 (2010) · Zbl 1227.74074
[34] Le Quang, H.; He, Q.-C., Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic, phases, J. Mech. Phys. Solids, 55, 9, 1899-1931 (2007) · Zbl 1173.74035
[35] Li, X.-F.; Wang, B.-L.; Lee, K. Y., Size effects of the bending stiffness of nanowires, J. Appl. Phys., 105, 074306 (2009)
[36] Lieber, C. M., One-dimensional nanostructures: chemistry, physics and applications, Solid State Commun., 107, 607-616 (1998)
[37] Maranganti, R.; Sharma, P., Atomistic determination of exoelectric properties of crystalline dielectrics, Phys. Rev. B, 80, 054109 (2009)
[38] Miller, R. E.; Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147 (2000)
[39] Mitrushchenkov, A.; Chambaud, G.; Yvonnet, J.; He, Q.-C., Towards an elastic model of wurtzite AlN nanowires, Nanotechnology, 21, 255702 (2010)
[40] Montanari, B.; Civalleri, B.; Zicovich-Wilson, C. M.; Dovesi, R., Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (alpha-\(Al_2 O_3)\), Int. J. Quantum Chem., 106, 1703-1714 (2006)
[41] Park, H. S.; Klein, P. A.; Wagner, G. J., A surface Cauchy-Born model for nanoscale materials, Int. J. Numer. Methods Engrg., 68, 1072-1095 (2006) · Zbl 1128.74005
[42] Park, H. S.; Klein, P. A., Surface Cauchy-Born analysis of surface stress effects on metallic nanowires, Phys. Rev. B, 75, 085408 (2007)
[43] Park, H. S., Strain sensing through the resonant properties of deformed metal nanowires, J. Appl. Phys., 104, 013516 (2008)
[44] Park, H. S.; Klein, P. A., A surface Cauchy-Born model for silicon nanostructures, Comput. Methods Appl. Mech. Engrg., 197, 3249-3260 (2008) · Zbl 1159.74312
[45] Park, H. S.; Cai, W.; Espinosa, H. D.; Huang, H., Mechanics of crystalline nanowires, MRS Bull., 34, 178-183 (2009)
[46] Qi, J.; Shi, D.; Jia, J., First-principles studies of the electronic and mechanical properties of ZnO nanobelts with different dominant surfaces, Nanotechnology, 19, 435707 (2008)
[47] Reddy, C. D.; Ramasuramaniam, A.; Shenoy, V. B.; Zhang, Y.-W., Edge elastic properties of defect-free single-layer graphene sheets, Appl. Phys. Lett., 94, 101904 (2009)
[48] Rudd, R. E.; Broughton, J. Q., Coarse-grained molecular dynamics and the atomic limit of finite elements, Phys. Rev. B, 58, 5893-5896 (1998)
[49] Samuel, B. A.; Desai, A. V.; Haque, M. A., Design and modeling of a MEMS pico-Newton loading/sensing device, Sens. Actuators A, 127, 1, 155-162 (2006)
[50] Sethoodeh, A. R.; Attariani, H.; Khosrownejad, M., Nickel nanowires under uniaxial loads: a molecular dynamics simulation study, Comput. Mater. Sci., 44, 378-384 (2008)
[51] Shanmugham, S.; Jeong, J.; Alkhateeb, A.; Aston, D. E., Polymer nanowire elastic moduli measured with digital pulsed force mode AFM, Langmuir, 21, 10214-10218 (2005)
[52] Sharma, P.; Ganti, S.; Bhate, N., Effects of surface on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., 82, 535-537 (2003)
[53] Sharma, P.; Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, ASME J. Appl. Mech., 71, 663-671 (2004) · Zbl 1111.74629
[54] Shenoy, V. B., Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B, 71, 094104 (2005)
[55] Singh, R. P.; Zhang, M.; Chan, D., Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction, J. Mater. Sci., 37, 781-788 (2002)
[56] Song, J.; Wang, X.; Riedo, E.; Wang, Z. L., Elastic properties of vertically aligned nanowires, Nano Lett., 5, 10, 1954-1958 (2005)
[57] Stakgold, I., The Cauchy relations in a molecular theory of elasticity, Quart. Appl. Mech., 8, 169-186 (1950) · Zbl 0037.42901
[58] Tadmor, E.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 1529-1563 (1996)
[59] Tian, L.; Rajapakse, R. K.N. D., Finite element modelling of nanoscale inhomogeneities in an elastic matrix, Comput. Mater. Sci., 41, 44-53 (2007) · Zbl 1167.74525
[60] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[61] Wang, X.; Song, J.; Liu, J.; Wang, Z. L., Coupling of atomistic and continuum, Science, 316, 102 (2007)
[62] Wang, J.; Duan, H. L.; Huang, Z. P.; Karihaloo, B. L., A scaling law for properties of nano-structured materials, Proc. Roy. Soc. Lond. A, 462, 1355-1363 (2006) · Zbl 1149.76652
[63] Wang, G.; Li, X., Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials, J. Appl. Phys., 104, 113517 (2008)
[64] Wei, G.; Shouwen, Y.; Ganyun, H., Finite element characterization of the size-dependent mechanical behaviour in nanosystems, Nanotechnology, 17, 1118-1122 (2006)
[65] Weiner, J. H.; theorem, Hellman-Feynman; moduli, elastic, and the Cauchy relation, Phys. Rev. B, 24, 845-848 (1981)
[66] Whang, D.; Jim, S.; Wu, Y.; Lieber, C. H., Large-scale hierarchical organization of nanowire arrays for integrated nanosystems, Nano Lett., 3, 9, 1255-1259 (2003)
[67] Wong, E. W.; Sheehan, P. E.; Lieber, C. M., Nanobeam mechanics: elasticity, strength, and toughening of nanorods and nanotubes, Science, 277, 1971-1975 (1997)
[68] Wu, H. A.; Wang, X. X., An atomistic-continuum inhomogeneous material model for the elastic bending of metal nanocantilevers, Adv. Engrg. Softw., 39, 764-769 (2008)
[69] Xi, Y.; Hu, C. G.; Han, X. Y.; Xiong, Y. F.; Gao, P. X.; Liu, G. B., Hydrothermal synthesis of ZnO nanobelts and gas sensitivity property, Solid State Commun., 141, 506-509 (2007)
[70] Xiao, S. P.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193, 1654-1669 (2004) · Zbl 1079.74509
[71] Yvonnet, J.; Le Quang, H.; He, Q.-C., An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech., 42, 704-712 (2008) · Zbl 1188.74076
[72] Zhang, J.; Wu, T.; Jiang, W.; Chen, L., Microstructure and properties of \(Ti_3 SiC_2\)/SiC nanocomposites fabricated by spark plasma sintering, Compos. Sci. Technol., 68, 499-505 (2008)
[73] Zhang, T.-Y.; Luo, M.; Chan, W. K., Size-dependent surface stress, surface, stiffness and Young’s modulus of hexagonal prism [111] β-SiC nanowires, J. Appl. Phys., 103, 104308 (2008)
[74] Zhang, Y.; Hong, J.; Liu, B.; Fang, D., Molecular dynamics investigations on the size-dependent ferroelectric behavior of \(BaTiO_3\) nanowires, Nanotechnology, 20, 405703 (2009)
[75] Zhu, R.; Wang, D.; Xiang, S.; Zhou, Z.; Ye, X., Zinc oxide nanowire electromechanical oscillator, Sens. Actuator A - Phys., 154, 3249-3260 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.