Rashid, Mohammad H. M.; Zguitti, Hassane Weyl type theorems and class \(A(s,t)\) operators. (English) Zbl 1244.47017 Math. Inequal. Appl. 14, No. 3, 581-594 (2011). Let \(T\) be a linear operator belonging to the class \(A(s,t)\), where \(0<s,t\leq 1\). Let \(f\) be an analytic function on an open neighborhood of the spectrum of \(T\). In this paper, the authors show that Weyl’s and generalized Weyl’s theorems do hold for \(f(T)\). They also prove that \(A(s,t)\) verifies Bishop’s property \(( \beta )\). Reviewer: Mohammed Hichem Mortad (Oran) Cited in 5 Documents MSC: 47A55 Perturbation theory of linear operators 47A53 (Semi-) Fredholm operators; index theories 47B20 Subnormal operators, hyponormal operators, etc. 47A10 Spectrum, resolvent 47A11 Local spectral properties of linear operators Keywords:single valued extension property; Weyl theorem; class \(wA(s, t)\); class \(A(s, t)\) PDF BibTeX XML Cite \textit{M. H. M. Rashid} and \textit{H. Zguitti}, Math. Inequal. Appl. 14, No. 3, 581--594 (2011; Zbl 1244.47017) Full Text: DOI