Zguitti, Hassane On the Drazin inverse for upper triangular operator matrices. (English) Zbl 1312.47003 Bull. Math. Anal. Appl. 2, No. 2, 27-33 (2010). Summary: In this paper we investigate the stability of Drazin spectrum \(\sigma_D(.)\) for upper triangular operator matrices \(M_C= \left[\begin{matrix} A& C\\ 0 & B\end{matrix}\right]\) using tools from local spectral theory. We show that \(\sigma_D(M_C) \cup [\mathcal{S}(A^\ast)\cap\mathcal{S}(B)]=\sigma_D(A)\cup\sigma_D(B)\) where \(\mathcal{S}(.)\) is the set where an operator fails to have the SVEP. As application we explore how the generalized Weyl’s theorem survives for \(M_C\). Cited in 5 Documents MSC: 47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.) 47A11 Local spectral properties of linear operators Keywords:operator matrices; Drazin spectrum; single-valued extension property PDF BibTeX XML Cite \textit{H. Zguitti}, Bull. Math. Anal. Appl. 2, No. 2, 27--33 (2010; Zbl 1312.47003) Full Text: Link