×

Stiffness design of a continuum under ill-load cases by fractional-norm objective formulation. (English) Zbl 1364.74080

Summary: In stiffness design with ill-load cases (ILC) by traditional method, the difficulty is to find a feasible structural component for supporting the weaker loads. This is due to significant difference between the magnitudes of the loads. A fractional-norm objective formulation is proposed to give a feasible stiffness design of a continuum under ILC. In the method, the objective function of each load case is mean structural compliance (MSC), and the multiple-load optimization is transformed into single objective design problem by using fractional-norm weighted scheme. The effect of fractional-norm on the final material distribution of structure is investigated by both theoretical and numerical analysis. Using the present method, the stiffness design with ill-load cases can be solved easily by selecting a value of norm in the interval of [0.1, 0.5].

MSC:

74P15 Topological methods for optimization problems in solid mechanics

Software:

top.m
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498-513 · Zbl 1172.76014 · doi:10.1002/fld.1964
[2] ANSYS Inc. (2013) http://www.ansys.com
[3] Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197-224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[4] Bendsøe MP, Diaz AR, Lipton R, Taylor JE (1995) Optimal-design of material properties and material distribution for multiple loading conditions. Int J Numer Methods Eng 38(7):1149-1170 · Zbl 0822.73047 · doi:10.1002/nme.1620380705
[5] Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635-654 · Zbl 0957.74037 · doi:10.1007/s004190050248
[6] Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin
[7] Cai K, Gao ZL, Shi J (2013) Compliance optimization of a continuum with Bi-modulus material under multiple load cases. Comput Aided Des 45:195-203 · doi:10.1016/j.cad.2012.07.009
[8] Díaz AR, Bendsøe MP (1992) Shape optimization of structures for multiple loading condition using a homogenization method. Struct Optim 4:17-22 · doi:10.1007/BF01894077
[9] Díaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41(4):163-177 · Zbl 1274.74262 · doi:10.1007/s00158-009-0416-y
[10] Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317(3-5):557-575 · doi:10.1016/j.jsv.2008.03.042
[11] Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331-390 · doi:10.1115/1.1388075
[12] Gao DY (2007) Solutions and optimality criteria to box constrained nonconvex minimization problems. J Ind Manag Optim 3(2):293-304 · Zbl 1171.90504 · doi:10.3934/jimo.2007.3.293
[13] Kang Z, Tong LY (2008) Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J Intell Mater Syst Struct 19(8):889-903 · doi:10.1177/1045389X07084527
[14] Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4-5):535-563 · Zbl 1050.74644 · doi:10.1016/S0045-7949(98)00326-5
[15] Luo YJ, Kang Z, Deng ZC (2011) Robust topology optimization design of structures with multiple load cases. Chin J Theor Appl Mech 43(1):227-234
[16] Luo Z, Chen LP, Zhang YQ, Huang YY (2005) Multi-stiffness topological optimization for continuum structures with multiple loading cases and a duplicate sensitivity filtering method. Acta Mech Solida Sin 26(1):29-36
[17] Luo Z, Chen LP, Yang JZ, Zhang YQ, Abdel-Malek K (2006a) Fuzzy tolerance multilevel approach for structural topology optimization. Comput Struct 84(3-4):127-140 · doi:10.1016/j.compstruc.2005.10.001
[18] Luo Z, Yang JZ, Chen LP, Zhang YQ, Abdel-Malek K (2006b) A new hybrid fuzzy-goal programming scheme for multi-objective topology optimization of static and dynamic structures under multiple loading conditions. Struct Multidiscip Optim 31(1):26-39 · Zbl 1245.90157 · doi:10.1007/s00158-005-0543-z
[19] Luo Z, Tong L, Ma H (2009) Shape and topology optimization for electrothermo mechanical microactuators using level set methods. J Comput Phys 228(9):3173-3181 · Zbl 1163.65045 · doi:10.1016/j.jcp.2009.01.010
[20] Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8-11):813-824 · doi:10.1016/S0045-7949(03)00008-7
[21] Sui YK, Yang DQ, Wang B (2000) Topology optimization of continuum structure with stress and displacement constraints under multiple loading cases. Acta Mech Sin 32(2):171-179
[22] Sui YK, Peng XR, Feng JL, He HL (2006) Topology optimization of structure with global stress constraints by independent continuum map method. Int J Comput Methods 3(3):295-319 · Zbl 1198.74059 · doi:10.1142/S0219876206000758
[23] Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120-127 · doi:10.1007/s001580050176
[24] Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227-246 · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[25] Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885-896 · doi:10.1016/0045-7949(93)90035-C
[26] Zhou M, Rozvany GIN (1991) The COC algorithm. 2. Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309-336 · doi:10.1016/0045-7825(91)90046-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.