×

Global asymptotic stability in mean for stochastic complex networked control systems. (English) Zbl 1482.93490

Summary: In this paper, global asymptotic stability in mean (GASM) for stochastic complex networked control systems (SCNCS) is studied. A fresh and suitable global Lyapunov function for SCNCS is constructed based on Kirchhoff’s matrix tree theorem in graph theory. Some sufficient criteria guaranteeing GASM for SCNCS are given, by applying Lyapunov method and stochastic analysis skills. These criteria are closely related to topological structure and coupling form functions of SCNCS. Furthermore, an application to a class of stochastic Lurie coupled control systems on networks (SLCCSN) is provided. Ultimately, a numerical test and its simulation process are presented to explain the validity of our theories.

MSC:

93D20 Asymptotic stability in control theory
93E15 Stochastic stability in control theory
93B70 Networked control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[2] Boccaletti, S.; Latora, V.; Moreno, Y., Complex networks: structure and dynamics, Phys Rep, 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[3] Liu, Y. Y.; Slotine, J. J.; Barabasi, A. L., Controllability of complex networks, Nature, 473, 7346, 167-173 (2011)
[4] Liu, X. W.; Xu, Y., Cluster synchronization in complex networks of nonidentical dynamical systems via pinning control, Neurocomputing, 168, 260-268 (2015)
[5] Gao, J. X.; Barzel, B.; Barabasi, A. L., Universal resilience patterns in complex networks, Nature, 530, 7590, 307-312 (2016)
[6] Lian, J. M.; Yang, T.; Yuan, Y., Special section on control of complex networked systems (CCNS): recent results and future trends, Annu Rev Control, 47, 275-277 (2019)
[7] Wen, G. H.; Yu, W. W.; Chen, M. Z.Q., Pinning a complex network to follow a target system with predesigned control inputs, IEEE T Syst Man Cy-S, 50, 6, 2293-2304 (2020)
[8] Wang, N.; Li, X. J., Optimal output synchronization control of a class of complex dynamical networks with partially unknown system dynamics, IEEE T Syst Man Cy-S, 51, 2, 822-832 (2021)
[9] Chen, L.; Yu, X. H.; Xin, X.; Sun, C. Y., Characteristic model-based control approach for complex network systems, IEEE T Syst Man Cy-S, 51, 6, 3599-3607 (2021)
[10] Li, M.; Gao, H.; Wang, J. X.; Wu, F. X., Control principles for complex biological networks, Brief Bioinform, 20, 6, 2253-2266 (2019)
[11] Xu, D. G.; Xu, X. Y.; Xie, Y. F.; Yang, C. H., Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks, Commun Nonlinear Sci, 48, 200-210 (2017) · Zbl 1510.92249
[12] Li, M. Y.; Shuai, Z. S., Global-stability problem for coupled systems of differential equations on networks, J Differential Equations, 248, 1, 1-20 (2010) · Zbl 1190.34063
[13] Wang, P. F.; Hong, Y.; Su, H., Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal-Hybri, 29, 395-413 (2018) · Zbl 1388.93101
[14] Wang, P. F.; Zhang, B. G.; Su, H., Stabilization of stochastic uncertain complex-valued delayed networks via aperiodically intermittent nonlinear control, IEEE T Syst Man Cy-S, 49, 3, 649-662 (2019)
[15] Liu, Y.; Liu, A. R.; Li, W. X., Synchronized stationary distribution of stochastic multi-group models with dispersal, Neural Comput Appl, 32, 9, 5001-5013 (2020)
[16] Gao, S.; Wu, B. Y., On input-to-state stability for stochastic coupled control systems on networks, Appl Math Comput, 262, 90-101 (2015) · Zbl 1410.93106
[17] Su, H.; Qu, Y. B.; Gao, S., A model of feedback control system on network and its stability analysis, Commun Nonlinear Sci, 18, 7, 1822-1831 (2013) · Zbl 1273.93079
[18] Gao, S.; Wang, Q.; Wu, B. Y., Existence and global exponential stability of periodic solutions for coupled control systems on networks with feedback and time delays, Commun Nonlinear Sci, 63, 72-87 (2018) · Zbl 1511.34078
[19] Gao, S.; Guo, Y.; Cao, Z. Q.; Feng, H., Periodic solutions for feedback control coupled systems on networks, Appl Anal (2021)
[20] Newman, M. E., The structure and function of complex networks, SIAM Rev, 45, 2, 167-256 (2003) · Zbl 1029.68010
[21] West, D. B., Introduction to graph theory (2001), Prentice Hall
[22] Biggs, N.; Lloyd, E. K.; J. R., Wilson, Graph theory 1736-1936 (1936), Oxford University Press · Zbl 0335.05101
[23] Gilardi-Veláquez, H. E.; Campos-Cantón, E., Nonclassical point of view of the Brownian motion generation via fractional deterministic model, Internat J Modern Phys A, 29, 3, Article 1850020 pp. (2018)
[24] Huerta-Cuéllar, G.; Jiménez-López, E.; Campos-Cantón, E.; Pisarchik, A. N., An approach to generate deterministic Brownian motion, Commun Nonlinear Sci, 19, 8, 2740-2746 (2014) · Zbl 1510.37086
[25] Shi, K. B.; Tang, Y. Y.; Zhong, S. M., Nonfragile asynchronous control for uncertain chaotic lurie network systems with Bernoulli stochastic process, Int J Robust Nonlin, 28, 5, 1693-1714 (2018) · Zbl 1390.93735
[26] Wang, T. B.; Zhao, S. W.; Zhou, W. N.; Yu, W. Q., Finite-time master-slave synchronization and parameter identification for uncertain lurie systems, Isa T, 53, 4, 1184-1190 (2014)
[27] Zheng, J. H.; Cui, B. T., State estimation of chaotic Lurie system with logarithmic quantization, Chaos Solition Fract, 112, 141-148 (2018) · Zbl 1394.93100
[28] Zhou, T. W.; Zuo, Z. Q.; Wang, Y. J.; Li, H. C., Synchronization of lurie systems under limited network transmission capacity with quantization and one-step packet dropout: An active method, IEEE T Syst Man Cy-S, 51, 8, 4920-4928 (2021)
[29] Drummond, R.; Zhao, S.; Duncan, S. R., Design tools for electrochemical supercapacitors using local absolute stability theory, IEEE Trans Control Syst Technol, 27, 3, 1071-1083 (2019)
[30] Arcak, M.; Andrew, T., Input-to-state stability for a class of lurie systems, Automatica, 38, 11, 1945-1949 (2002) · Zbl 1011.93101
[31] Liu, P. L., Robust absolute stability criteria for uncertain lurie interval time-varying delay systems of neutral type, Isa T, 60, 2-11 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.