×

zbMATH — the first resource for mathematics

Tunnelling effect of charged and magnetized particles from the Kerr-Newman-Kasuya black hole. (English) Zbl 1248.83090
Summary: We extend the Parikh-Wilczek tunnelling framework to calculate the emission rate of a particle with electric and magnetic charges. We first reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges. Then, in the background of Kerr-Newman-Kasuya black hole spacetime, we calculate the emission spectrum of the outgoing particles with electric and magnetic charges. For the sake of simplicity, we only consider the case that the rate of electric and magnetic charge of the emission particle is constant and equals that of the black hole. In this case, the emission spectrum deviates from the pure thermal spectrum, but it is consistent with an underlying unitary theory and takes the same functional form as that of uncharged massless particles. Finally, discussions about the result are presented.

MSC:
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kraus, P.; Wilczek, F., Nucl. phys. B, 433, 403, (1995)
[2] Parikh, M.K.; Wilczek, F., Phys. rev. lett., 85, 5042, (2000)
[3] Parikh, M.K., Int. J. mod. phys. D, 13, 2355, (2004)
[4] Parikh, M.K.
[5] Hemming, S.; Keski-Vakkuri, E., Phys. rev. D, 64, 044006, (2001)
[6] Medved, A.J.M., Phys. rev. D, 66, 124009, (2002)
[7] Alves, M., Int. J. mod. phys. D, 10, 575, (2001)
[8] Vagenas, E.C., Phys. lett. B, 503, 399, (2001)
[9] Vagenas, E.C., Phys. lett. B, 533, 302, (2002)
[10] Vagenas, E.C., Mod. phys. lett. A, 17, 609, (2002)
[11] Vagenas, E.C., Phys. lett. B, 559, 65, (2003)
[12] Vagenas, E.C., Phys. lett. B, 584, 127, (2004)
[13] Vagenas, E.C., Mod. phys. lett. A, 20, 2449, (2005)
[14] Arzano, M.; Medved, A.J.M.; Vagenas, E.C., J. high energy phys., 0509, (2005), Art. No. 037
[15] Setare, M.R.; Vagenas, E.C., Int. J. mod. phys. A, 20, 7219, (2005)
[16] Zhang, J.; Zhao, Z., Mod. phys. lett. A, 20, 1673, (2005)
[17] Zhang, J.; Zhao, Z., Phys. lett. B, 618, 14, (2005)
[18] Liu, W.B., Phys. lett. B, 634, 541, (2006)
[19] Wu, S.Q.; Jiang, Q.Q., J. high energy phys., 0603, (2006), Art. No. 079
[20] Zhang, J.; Zhao, Z., Nucl. phys. B, 725, 173, (2005)
[21] Zhang, J.; Zhao, Z., J. high energy phys., 0510, (2005), Art. No. 055
[22] Zhang, J.; Zhao, Z., Phys. lett. B, 638, 110, (2006)
[23] Zhang, J.; Zhao, Z., Acta phys. sin., 55, 3796, (2006)
[24] Zhang, J.; Zhao, Z., Mod. phys. lett. A, 21, 1865, (2006)
[25] Jiang, Q.Q.; Wu, S.Q.; Cai, X., Phys. rev. D, 73, 064003, (2006)
[26] Damour, T., Phys. rev. D, 18, 18, (1978)
[27] Carmeli, M., Classical fields: general relativity and gauge theory, (1982), Wiley-Interscience New York, p. 591 · Zbl 0585.53059
[28] Mäkelä, J.; Repo, P., Phys. rev. D, 57, 4899, (1998)
[29] Newman, E.T.; Janis, A.I., J. math. phys., 6, 915, (1965)
[30] Wald, R.M., General relativity, (1984), Univ. of Chicago Press Chicago · Zbl 0549.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.