×

Dynamics of uncertain discrete-time neural network with delay and impulses. (English) Zbl 1418.92010

Summary: The stability of discrete-time impulsive delay neural networks with and without uncertainty is investigated. First, by using Razumikhin-type theorem, a new less conservative condition for the exponential stability of discrete-time neural network with delay and impulse is proposed. Moreover, some new sufficient conditions are derived to guarantee the stability of uncertain discrete-time neural network with delay and impulse by using Lyapunov function and linear matrix inequality (LMI). Finally, several examples with numerical simulation are presented to demonstrate the effectiveness of the obtained results.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
39A60 Applications of difference equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lu, H.; Shen, R.; Chung, F.-L., Global exponential convergence of Cohen-Grossberg neural networks with time delays, IEEE Transactions on Neural Networks, 16, 6, 1694-1696 (2005) · doi:10.1109/tnn.2005.853336
[2] Guo, S.; Huang, L., Stability analysis of Cohen-Grossberg neural networks, IEEE Transactions on Neural Networks, 17, 1, 106-117 (2006) · doi:10.1109/TNN.2005.860845
[3] Su, W.; Chen, Y., Global robust stability criteria of stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays, Communications in Nonlinear Science and Numerical Simulation, 14, 2, 520-528 (2009) · Zbl 1221.37196 · doi:10.1016/j.cnsns.2007.09.001
[4] Luo, W.; Zhong, S.; Yang, J., Global exponential stability of impulsive Cohen-Grossberg neural networks with delays, Chaos, Solitons & Fractals, 42, 2, 1084-1091 (2009) · Zbl 1198.34156 · doi:10.1016/j.chaos.2009.03.046
[5] Orman, Z., New sufficient conditions for global stability of neutral-type neural networks with time delays, Neurocomputing, 97, 141-148 (2012) · doi:10.1016/j.neucom.2012.05.016
[6] Mohamad, S., Exponential stability in Hopfield-type neural networks with impulses, Chaos, Solitons and Fractals, 32, 2, 456-467 (2007) · Zbl 1143.34031 · doi:10.1016/j.chaos.2006.06.035
[7] Chen, Z.; Ruan, J., Global dynamic analysis of general Cohen-Grossberg neural networks with impulse, Chaos, Solitons and Fractals, 32, 5, 1830-1837 (2007) · Zbl 1142.34045 · doi:10.1016/j.chaos.2005.12.018
[8] Chen, Z.; Ruan, J., Global stability analysis of impulsive Cohen-Grossberg neural networks with delay, Physics Letters A, 345, 1-3, 101-111 (2005) · Zbl 1345.92012 · doi:10.1016/j.physleta.2005.06.104
[9] Yang, Z.; Xu, D., Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays, Applied Mathematics and Computation, 177, 1, 63-78 (2006) · Zbl 1103.34067 · doi:10.1016/j.amc.2005.10.032
[10] Song, Q.; Zhang, J., Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays, Nonlinear Analysis: Real World Applications, 9, 2, 500-510 (2008) · Zbl 1142.34046 · doi:10.1016/j.nonrwa.2006.11.015
[11] Liu, B.; Hill, D. J., Impulsive consensus for complex dynamical networks with nonidentical nodes and coupling time-delays, SIAM Journal on Control and Optimization, 49, 2, 315-338 (2011) · Zbl 1217.93078 · doi:10.1137/080722060
[12] Shao, Y., Existence of exponential periodic attractor of BAM neural networks with time-varying delays and impulses, Neurocomputing, 93, 1-9 (2012) · doi:10.1016/j.neucom.2012.03.004
[13] Mohamad, S.; Gopalsamy, K., Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Mathematics and Computers in Simulation, 53, 1-2, 1-39 (2000) · doi:10.1016/s0378-4754(00)00168-3
[14] Li, W.; Pang, L.; Su, H.; Wang, K., Global stability for discrete Cohen-Grossberg neural networks with finite and infinite delays, Applied Mathematics Letters, 25, 12, 2246-2251 (2012) · Zbl 1262.39021 · doi:10.1016/j.aml.2012.06.011
[15] Mohamad, S.; Gopalsamy, K., Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Applied Mathematics and Computation, 135, 1, 17-38 (2003) · Zbl 1030.34072 · doi:10.1016/S0096-3003(01)00299-5
[16] Chen, Z.; Zhao, D.; Fu, X., Discrete analogue of high-order periodic Cohen-Grossberg neural networks with delay, Applied Mathematics and Computation, 214, 1, 210-217 (2009) · Zbl 1172.39020 · doi:10.1016/j.amc.2009.03.083
[17] Wu, S.; Li, C.; Liao, X.; Duan, S., Exponential stability of impulsive discrete systems with time delay and applications in stochastic neural networks: a Razumikhin approach, Neurocomputing, 82, 29-36 (2012) · doi:10.1016/j.neucom.2011.09.029
[18] Zhang, Y., Exponential stability analysis for discrete-time impulsive delay neural networks with and without uncertainty, Journal of the Franklin Institute, 350, 4, 737-756 (2013) · Zbl 1281.93072 · doi:10.1016/j.jfranklin.2012.12.025
[19] Sun, Y.; Cao, J.; Wang, Z., Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing, 70, 13-15, 2477-2485 (2007) · doi:10.1016/j.neucom.2006.09.006
[20] Boyed, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0816.93004
[21] Song, Q.; Cao, J., Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, Journal of the Franklin Institute, 345, 1, 39-59 (2008) · Zbl 1167.93369 · doi:10.1016/j.jfranklin.2007.06.001
[22] Wu, S.-L.; Li, K.-L.; Zhang, J.-S., Exponential stability of discrete-time neural networks with delay and impulses, Applied Mathematics and Computation, 218, 12, 6972-6986 (2012) · Zbl 1241.93043 · doi:10.1016/j.amc.2011.12.079
[23] Li, Y.; Wang, C., Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses, Fuzzy Sets and Systems, 217, 62-79 (2013) · Zbl 1285.93078 · doi:10.1016/j.fss.2012.11.009
[24] Xiong, W.; Cao, J., Global exponential stability of discrete-time Cohen-Grossberg neural networks, Neurocomputing, 64, 433-446 (2005) · doi:10.1016/j.neucom.2004.08.004
[25] Luo, M.; Zhong, S., Global dissipativity of uncertain discrete-time stochastic neural networks with time-varying delays, Neurocomputing, 85, 20-28 (2012) · doi:10.1016/j.neucom.2011.12.029
[26] Li, C.; Wu, S.; Feng, G. G.; Liao, X., Stabilizing effects of impulses in discrete-time delayed neural networks, IEEE Transactions on Neural Networks, 22, 2, 323-329 (2011) · doi:10.1109/TNN.2010.2100084
[27] Liu, B.; Marquez, H. J., Uniform stability of discrete delay systems and synchronization of discrete delay dynamical networks via Razumikhin technique, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55, 9, 2795-2805 (2008) · doi:10.1109/TCSI.2008.923163
[28] Li, X., Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects, Neurocomputing, 73, 4-6, 749-758 (2010) · doi:10.1016/j.neucom.2009.10.016
[29] Hou, L.; Zong, G.; Wu, Y., Robust exponential stability analysis of discrete-time switched Hopfield neural networks with time delay, Nonlinear Analysis: Hybrid Systems, 5, 3, 525-534 (2011) · Zbl 1238.93075 · doi:10.1016/j.nahs.2010.10.014
[30] Zhu, X.-L.; Wang, Y.; Yang, G.-H., New delay-dependent stability results for discrete-time recurrent neural networks with time-varying delay, Neurocomputing, 72, 13-15, 3376-3383 (2009) · doi:10.1016/j.neucom.2009.03.006
[31] Jarina Banu, L.; Balasubramaniam, P.; Ratnavelu, K., Robust stability analysis for discrete-time uncertain neural networks with leakage time-varying delay, Neurocomputing, 151, 2, 808-816 (2015) · doi:10.1016/j.neucom.2014.10.018
[32] Samli, R., A new delay-independent condition for global robust stability of neural networks with time delays, Neural Networks, 66, 131-137 (2015) · Zbl 1398.34100 · doi:10.1016/j.neunet.2015.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.