×

zbMATH — the first resource for mathematics

Structure analysis of a class of fuzzy controllers using pseudo trapezoid shaped membership functions. (English) Zbl 0964.93061
For a Sugeno-Takagi type fuzzy controller with trapezoidal-like input fuzzy sets the authors determine the analytic form of the control function, and discuss some of its properties.

MSC:
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Buckley, J. J., Ying, H., Fuzzy controller theory: limit theorems for linear fuzzy control rules, Automatica, 1989, 25(3): 469. · Zbl 0685.93003 · doi:10.1016/0005-1098(89)90017-4
[2] Siler, W., Ying, H., Fuzzy control theory: the linear case, Fuzzy Sets and Systems, 1989, (33): 275. · Zbl 0683.93002 · doi:10.1016/0165-0114(89)90118-8
[3] Ying, H., Siler, W., Buckley, J. J., Fuzzy control theory: a nonlinear case, Automatica, 1990, 26(3): 513. · Zbl 0713.93036 · doi:10.1016/0005-1098(90)90022-A
[4] Ying, H., A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller, Automatica, 1993, 29(2): 499. · Zbl 0772.93050 · doi:10.1016/0005-1098(93)90146-K
[5] Ying, H., Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with unknown mathematical models, Automatica, 1994, 30(7): 1185. · Zbl 0800.93711 · doi:10.1016/0005-1098(94)90213-5
[6] Zhang Naiyao, Structure analysis of typical fuzzy controller, Fuzzy Systems and Mathematics, 1997, 11(2): 10. · Zbl 0925.93495
[7] Li Ning, Zhang Naiyao, Structure analysis of typical fuzzy controller using different fuzzy inference methods, Fuzzy Systems and Mathematics, 1998, 12(3): 85.
[8] Li Ning, Zhang Naiyao, Output expression of typical fuzzy controller and systematic design method, Control and Decision, to be published.
[9] Zeng, X. J., Madan, G., Sign, approximation theory of fuzzy systems, Fuzzy-IEEE’ 94.
[10] Li Hongxing, Variable universe of discourse adaptive fuzzy controller, Science in China (in Chinese), Ser. E, 1999, 29 (1): 10. · Zbl 0935.93042
[11] Li Hongxing, The interpolation mechanism of fuzzy control, Science in China (in Chinese), Ser. E, 1998, 41(3): 315. · Zbl 0916.93041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.