×

Vector total fractional-order variation and its applications for color image denoising and decomposition. (English) Zbl 1481.94035

Summary: In this paper, a vector total fractional-order variation (VTV-\(\beta)\) is proposed. Then, VTV-\(\beta\) model and \(G^\beta (\Omega)\) model are proposed for color image denoising and decomposition, respectively. Some properties of the VTV-\(\beta\) are investigated and an alternative algorithm is used to solve the two models. Some experimental results are given to show the effectiveness and advantages of our methods.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry

Software:

tvreg; ma2dfc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing, Springer.; G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing, Springer. · Zbl 1110.35001
[2] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[3] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 3, 492-526 (2010) · Zbl 1195.49025
[4] Zhu, W.; Chan, T., Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5, 1, 1-32 (2012) · Zbl 1258.94021
[5] Zhang, X.; Burger, M.; Bresson, X.; Osher, S., Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3, 3, 253-276 (2010) · Zbl 1191.94030
[6] Sun, Z.; Chen, S.; Qiao, L., A general non-local denoising model using multi-kernel-induced measures, Pattern Recognit., 47, 4, 1751-1763 (2014) · Zbl 1339.68293
[7] Maleki, A.; Narayan, M.; Baraniuk, R. G., Anisotropic nonlocal means denoising, Appl. Comput. Harmon. Anal., 35, 3, 452-482 (2013) · Zbl 1336.94011
[8] Duran, J.; Moeller, M.; Sbert, C.; Cremers, D., Collaborative total variation: a general framework for vectorial TV models, SIAM J. Imaging Sci., 9, 1, 116-151 (2016) · Zbl 1381.94016
[9] Bresson, X.; Chan, T. F., Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2, 4, 455-484 (2008) · Zbl 1188.68337
[10] Bai, J.; Feng, X.-C., Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16, 10, 2492-2502 (2007) · Zbl 1119.76377
[11] Zhang, J.; Wei, Z.; Xiao, L., Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43, 1, 39-49 (2012) · Zbl 1255.68278
[12] Zhang, J.; Chen, K., A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8, 4, 2487-2518 (2015) · Zbl 1327.62388
[13] Jun, Z.; Wei, Z., A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Appl. Math. Modell., 35, 5, 2516-2528 (2011) · Zbl 1217.94024
[14] Chen, D.; Chen, Y.; Xue, D., Fractional-order total variation image restoration based on primal-dual algorithm, Abstr. Appl. Anal. (2013) · Zbl 1364.94091
[15] Chan, R. H.; Lanza, A.; Morigi, S.; Sgallari, F., An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theory Methods Appl., 6, 1, 276-296 (2013) · Zbl 1289.68196
[16] Chen, B.; Huang, S.; Liang, Z. R.; Chen, W. S.; Pan, B. B., A fractional order derivative based active contour model for inhomogeneous image segmentation, Appl. Math. Modell., 65, 120-136 (2019) · Zbl 1480.94005
[17] Han, H., A variational model with fractional-order regularization term arising in registration of diffusion tensor image, Inverse Probl. Imaging, 12, 6, 1263-1291 (2018) · Zbl 1491.49023
[18] Raghunandan, K. S.; Shivakumara, P.; Jalab, H. A.; Ibrahim, R. W.; Kumar, G. H.; Pal, U.; Lu, T., Riesz fractional based model for enhancing license plate detection and recognition, IEEE Trans. Circuits Syst. Video Technol., 28, 9, 2276-2288 (2018)
[19] Blomgren, P.; Chan, T. F., Color TV: total variation methods for restoration of vector-valued images, IEEE Trans. Image Process., 7, 3, 304-309 (1998)
[20] Duval, V.; Aujol, J.-F.; Vese, L. A., Mathematical modeling of textures: application to color image decomposition with a projected gradient algorithm, J. Math. Imaging Vis., 37, 3, 232-248 (2010) · Zbl 1287.94013
[21] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures (2001), American Mathematical Society · Zbl 0987.35003
[22] Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives (1998), Academic Press · Zbl 0922.45001
[23] Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. Math. Theor., 40, 24, 6287-6303 (2007) · Zbl 1125.26007
[24] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, 1, 120-145 (2011) · Zbl 1255.68217
[25] M. Zhu, T.F. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report (2008).; M. Zhu, T.F. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report (2008).
[26] Wang, W.; He, C., A fast and effective algorithm for a poisson denoising model with total variation, IEEE Signal Process. Lett., 24, 3, 269-273 (2017)
[27] Vese, L. A.; Osher, S. J., Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 1-3, 553-572 (2003) · Zbl 1034.49039
[28] Aujol, J.-F.; Aubert, G.; Blanc-Féraud, L.; Chambolle, A., Image decomposition application to SAR images., Lecture Notes in Computer Science, Scale Space Methods in Computer Vision (2695), 297-312 (2003) · Zbl 1067.68719
[29] Aubert, G.; Aujol, J. F., Modeling very oscillating signals. application to image processing, Appl. Math. Optim., 51, 2, 163-182 (2005) · Zbl 1162.49306
[30] Tadmor, E.; Athavale, P., Multiscale image representation using novel integro-differential equations, Inverse Probl. Imaging, 3, 4, 693-710 (2009) · Zbl 1185.68814
[31] Tadmor, E.; Nezzar, S.; Vese, L., A multiscale image representation using hierarchical (BV, L2) decompositions, Multiscale Model. Simul., 2, 4, 554-579 (2004) · Zbl 1146.68472
[32] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Vinagre Jara, B. M., Matrix approach to discrete fractional calculus II: partial fractional differential equations, J. Comput. Phys., 228, 8, 3137-3153 (2009) · Zbl 1160.65308
[33] Tseng, C.-C.; Lee, S.-L., Designs of matrix fractional order differentiators, Signal Process., 111, 73-88 (2015)
[34] SOUSA, E., How to approximate the fractional derivative of order \(1 < α\) ≤ 2, Int. J. Bifurc. Chaos, 22, 04, 1250075 (2012) · Zbl 1258.26006
[35] Duran, J.; Coll, B.; Sbert, C., Chambolle’s projection algorithm for total variation denoising, Image Process. Online, 3, 311-331 (2013)
[36] Getreuer, P., Rudin-Osher-Fatemi total variation denoising using Split Bregman, Image Process. Online, 2, 74-95 (2012)
[37] Zhang, L.; Wu, X.; Buades, A.; Li, X., Color demosaicking by local directional interpolation and nonlocal adaptive thresholding, J. Electron. Imaging, 20, 2 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.