×

Generation of atomic NOON states via adiabatic passage. (English) Zbl 1305.81025

Summary: We propose a scheme for generating atomic NOON states via adiabatic passage. In the scheme, a double \(\Lambda \)-type three-level atom is trapped in a bimodal cavity, and two sets of \(\Lambda \)-type three-level atoms are translated into and outside of two single-mode cavities, respectively. The three cavities connected by optical fibers are always in vacuum states. After a series of operations and suitable interaction time, we can obtain arbitrary large-\(n\) NOON states of two sets of \(\Lambda \)-type three-level atoms in distant cavities by performing a single projective measurement on the double \(\Lambda \)-type three-level atom. Our scheme is robust against the spontaneous emissions of atoms, the decays of fibers, and photon leakage of cavities, due to the adiabatic elimination of atomic excited states and the application of adiabatic passage.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81V80 Quantum optics
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3-28 (1992) · Zbl 1114.94005 · doi:10.1007/BF00191318
[3] Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881-2884 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[4] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[5] Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656-4659 (1996) · doi:10.1103/PhysRevLett.76.4656
[6] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[7] Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392-2395 (2000) · doi:10.1103/PhysRevLett.85.2392
[8] Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003) · doi:10.1103/PhysRevLett.91.147902
[9] Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014) · doi:10.1103/PhysRevA.89.033856
[10] Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger-Horne-Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31, 2077-2082 (2014) · doi:10.1364/JOSAB.31.002077
[11] Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for \[NN\]-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857-1877 (2014) · Zbl 1305.81149 · doi:10.1007/s11128-014-0772-4
[12] Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967-1978 (2014) · Zbl 1305.81022 · doi:10.1007/s11128-014-0789-8
[13] Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733-2736 (2000) · doi:10.1103/PhysRevLett.85.2733
[14] D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001) · doi:10.1103/PhysRevLett.87.013602
[15] Edamatsu, K., Shimizu, R., Itoh, T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002) · doi:10.1103/PhysRevLett.89.213601
[16] Walther, P., Pan, J.W., Aspelmeyer, M., Ursin, R., Gasparoni, S., Zeilinger, A.: De Broglie wavelength of a non-local four-photon state. Nature 429, 158-161 (2004) · doi:10.1038/nature02552
[17] Glasser, R.T., Cable, H., Dowling, J.P.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008) · doi:10.1103/PhysRevA.78.012339
[18] Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, 4649-4652 (1996) · doi:10.1103/PhysRevA.54.R4649
[19] Jones, J.A., Karlen, S.D., Fitzsimons, J., Ardavan, A., Benjamin, S.C., Briggs, G.A.D., Morton, J.J.L.: Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166-1168 (2009) · doi:10.1126/science.1170730
[20] Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044-2046 (1987) · doi:10.1103/PhysRevLett.59.2044
[21] Gerry, C.C., Campos, R.A.: Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A 64, 063814 (2001) · doi:10.1103/PhysRevA.64.063814
[22] Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002) · doi:10.1103/PhysRevA.65.052104
[23] Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161-164 (2004) · doi:10.1038/nature02493
[24] Lee, H., Kok, P., Cerf, N.J., Dowling, J.P.: Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. Phys. Rev. A 65, 030101 (2002) · doi:10.1103/PhysRevA.65.030101
[25] Hofmann, H.F., Ono, T.: High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light. Phys. Rev. A 76, 031806 (2007) · doi:10.1103/PhysRevA.76.031806
[26] Cable, H., Dowling, J.P.: Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99, 163604 (2007) · doi:10.1103/PhysRevLett.99.163604
[27] Afek, I., Ambar, O., Silberberg, Y.: High-NOON states by mixing quantum and classical light. Science 328, 879-881 (2010) · Zbl 1226.81028 · doi:10.1126/science.1188172
[28] Chen, Y.A., Bao, X.H., Yuan, Z.S., Chen, S., Zhao, B., Pan, J.W.: Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104, 043601 (2010) · doi:10.1103/PhysRevLett.104.043601
[29] Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12, 093036 (2010) · doi:10.1088/1367-2630/12/9/093036
[30] Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011) · doi:10.1103/PhysRevLett.106.060401
[31] Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99, 053602 (2007) · doi:10.1103/PhysRevLett.99.053602
[32] Islam, R., Ikram, M., Saif, F.: Engineering maximally entangled \[NN\]-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B At. Mol. Opt. Phys. 40, 1359-1368 (2007) · doi:10.1088/0953-4075/40/7/005
[33] Yang, R.C., Li, G., Li, J., Zhang, T.C.: Atomic NOON state generation in distant cavities by virtual excitations. Chin. Phys. B 20, 060302 (2011) · doi:10.1088/1674-1056/20/6/060302
[34] Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283, 189-191 (2010) · doi:10.1016/j.optcom.2009.09.044
[35] Rodriguez-Mendez, D., Moya-Cessa, H.: NOON states in entangled cavities. Opt. Commun. 284, 3345-3347 (2011) · doi:10.1016/j.optcom.2011.03.016
[36] Lin, X., Su, W.J.: Generation of NOON sates for two atomic samples trapped in two distant cavities. Int. J. Theor. Phys. 50, 2592-2600 (2011) · Zbl 1227.81081 · doi:10.1007/s10773-011-0754-6
[37] Xiao, X.Q., Zeng, G.H.: A cavity-QED-based scheme for generating multi-photon NOON state. Int. J. Theor. Phys. 51, 2398-2405 (2012) · Zbl 1251.81016 · doi:10.1007/s10773-012-1119-5
[38] Niloghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012) · doi:10.1103/PhysRevLett.108.123603
[39] Liu, K., Chen, L.B., Shi, P., Zhang, W.Z., Gu, Y.J.: Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf. Process. 12, 3057-3066 (2013) · Zbl 1273.81040 · doi:10.1007/s11128-013-0583-z
[40] Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158-5161 (1999) · doi:10.1103/PhysRevLett.83.5158
[41] Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulse. Phys. Rev. A 40, 6741-6744 (1989) · doi:10.1103/PhysRevA.40.6741
[42] Parkins, A.S., Marte, P., Zoller, P., Kimble, H.J.: Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett. 71, 3095-3098 (1993) · doi:10.1103/PhysRevLett.71.3095
[43] Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003-1025 (1998) · doi:10.1103/RevModPhys.70.1003
[44] Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 32, 4535-4546 (1999) · doi:10.1088/0953-4075/32/18/312
[45] Gong, S.Q., Unanyan, R., Bergmann, K.: Preparation of Fock states and quantum entanglement via stimulated Raman adiabatic passage using a four-level atom. Eur. Phys. J. D 19, 257-262 (2002)
[46] Niu, Y., Gong, S., Li, R., Jin, S.: Creation of atomic coherent superposition states via the technique of stimulated Raman adiabatic passage using a \[\Lambda\] Λ-type system with a manifold of levels. Phys. Rev. A 70, 023805 (2004) · doi:10.1103/PhysRevA.70.023805
[47] Chen, L.B., Ye, M.Y., Lin, G.W., Du, Q.H., Lin, X.M.: Generation of entanglement via adiabatic passage. Phys. Rev. A 76, 062304 (2007) · doi:10.1103/PhysRevA.76.062304
[48] Lü, X.Y., Zheng, L.L., Huang, P., Li, J., Yang, X.X.: Adiabatic passage scheme for entanglement between two distant microwave cavities interacting with single-molecule magnets. J. Opt. Soc. Am. B 26, 1162-1168 (2009) · doi:10.1364/JOSAB.26.001162
[49] Song, P.J., Lü, X.Y., Si, L.G., Yang, X.X.: Deterministic generation of Greenberger-Horne-Zeilinger and W states for three distant atoms via adiabatic passage. Chin. Phys. B 20, 050308 (2011) · doi:10.1088/1674-1056/20/5/050308
[50] Gaubatz, U., Rudecki, P., Schiemann, S., Bergnann, K.: Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laserfields. A new concept and experimental results. J. Chem. Phys. 92, 5363-5376 (1990) · doi:10.1063/1.458514
[51] Goto, H., Ichimura, K.: Population transfer via stimulated Raman adiabatic passage in a solid. Phys. Rev. A 74, 053410 (2006) · doi:10.1103/PhysRevA.74.053410
[52] Yan, D., Cui, C.L., Zhang, M., Wu, J.H.: Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage. Phys. Rev. A 84, 043405 (2011) · doi:10.1103/PhysRevA.84.043405
[53] Hou, Q.Z., Yang, W.L., Feng, M., Chen, C.Y.: Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment. Phys. Rev. A 88, 013807 (2013) · doi:10.1103/PhysRevA.88.013807
[54] Sauer, J.A., Fortier, K.M., Chang, M.S., Hamley, C.D., Chapman, M.S.: Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004) · doi:10.1103/PhysRevA.69.051804
[55] Xue, P., Xiao, Y.F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006) · doi:10.1103/PhysRevLett.97.140501
[56] Zheng, S.B., Guo, G.C.: Tunable phase gate for two atoms with an immunity to decoherence. Phys. Rev. A 73, 052328 (2006) · doi:10.1103/PhysRevA.73.052328
[57] Wu, H.Z., Yang, Z.B., Zheng, S.B.: Effective scheme for generating cluster states in cavity QED. Chin. Phys. Lett. 24, 3055-3058 (2007) · doi:10.1088/0256-307X/24/11/011
[58] Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., Monz, T., Riebe, M., Schindler, P., Villar, A.S., Hänsel, W., Roos, C.F., Blatt, R., Abgrall, M., Santarelli, G., Rovera, G.D., Laurent, Ph: Absolute frequency measurement of the \[^{40}Ca^+4s^2S_{1/2}-3d^2D_{5/2}40Ca+4\] s2S1/2-3d2D5/2 clock transition. Phys. Rev. Lett. 102, 023002 (2009) · doi:10.1103/PhysRevLett.102.023002
[59] Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242-5245 (1997) · doi:10.1103/PhysRevLett.79.5242
[60] Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006) · doi:10.1103/PhysRevLett.96.010503
[61] Law, C.K., Eberly, J.H.: Synthesis of arbitrary superposition of Zeeman states in an atom. Opt. Express 2, 368-371 (1998) · doi:10.1364/OE.2.000368
[62] Cai, M., Painter, O., Vahala, K.J.: Observation of critical coupling in a fiber taper to a Silica-microsphere whispering-gallery Mode System. Phys. Rev. Lett. 85, 74 (2000) · doi:10.1103/PhysRevLett.85.74
[63] Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004) · doi:10.1103/PhysRevA.70.012305
[64] Trupke, M., Hinds, E.A., Eriksson, S., Curtis, E.A., Moktadir, Z., Kukharenka, E., Kraft, M.: Microfabricated high-finesse optical cavity with open access and small volume. Appl. Phys. Lett. 87, 211106 (2005) · doi:10.1063/1.2132066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.