×

Large eddy simulation of separation control over a backward-facing step flow by suction. (English) Zbl 1271.76149

Summary: Separation control over a backward-facing step (BFS) flow by continuous suction was numerically investigated using the turbulence model of large eddy simulation (LES). The effect of suction control on the flow fields was scrutinised by altering the suction flow coefficient, and the results indicate that suction is not only very effective in shortening the reattachment length but also very influential in reducing the tangential velocity gradient and turbulence fluctuations of the reattached flows. With increasing increments of the absolute suction flow coefficient, the effect of suction control is more significant. Furthermore, the detailed flow fields (including the time-averaged stream and velocity fields) and turbulence characteristics (including the time-averaged resolved kinetic energy and RMS velocity) for the BFS models with or without suction are presented to discuss the mechanism of suction control. Comparisons of the time-averaged statistics between the numerical simulations and corresponding experiments are conducted, and it shows that the LES based on the dynamic kinetic energy subgrid-scale model (DKEM) can acquire exact results. Therefore, feasibility of the numerical methods to simulate suction-controlled models is validated.

MSC:

76F70 Control of turbulent flows
76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

FLUENT; FlowLab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1080/10618560802566246 · Zbl 1184.76691 · doi:10.1080/10618560802566246
[2] DOI: 10.1016/j.crme.2006.05.004 · Zbl 1177.76152 · doi:10.1016/j.crme.2006.05.004
[3] DOI: 10.1017/S0022112083002839 · doi:10.1017/S0022112083002839
[4] DOI: 10.1016/j.ijheatfluidflow.2008.01.002 · doi:10.1016/j.ijheatfluidflow.2008.01.002
[5] DOI: 10.1017/S0022112081000670 · doi:10.1017/S0022112081000670
[6] DOI: 10.1016/j.compfluid.2007.07.003 · Zbl 1237.76051 · doi:10.1016/j.compfluid.2007.07.003
[7] DOI: 10.2514/1.38394 · doi:10.2514/1.38394
[8] DOI: 10.1016/j.ijheatfluidflow.2004.03.004 · doi:10.1016/j.ijheatfluidflow.2004.03.004
[9] Ellzey, J. L. and Berbee, J. G. Aspect ratio and Reynolds number effects on the flow behind a rearward-facing step. AIAA 26th Aerospace Sciences Meeting. Reno, Nevada, 11–14 January 1988. AIAA Paper 88-0612
[10] FLUENT 6.2 User’s guide (2005)
[11] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[12] Hudy, L. M. Particle image velocimetry measurements of a two/three-dimensional separating/reattaching boundary layer downstream of an axisymmetric backward-facing step. AIAA 43rd Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 10–13 January 2005. AIAA Paper 2005-114
[13] Ke F., Journal of Hydrology 19 pp 180– (2007)
[14] DOI: 10.1080/10618560500502519 · Zbl 1184.76682 · doi:10.1080/10618560500502519
[15] Kim, S. E. Large eddy simulation using an unstructured mesh based finite-volume solver. AIAA 34th Fluid Dynamics Conference and Exhibit. Oregon, Portland, 28 June–1 July 2004. AIAA Paper 2004-2548
[16] Kim, W. W. and Menon, S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA 35th Aerospace Sciences Meeting. Reno, Nevada, 6–9 January, 1997. AIAA Paper 97-0210
[17] DOI: 10.1080/10618560903580013 · Zbl 1278.76045 · doi:10.1080/10618560903580013
[18] DOI: 10.1146/annurev.fl.28.010196.000401 · doi:10.1146/annurev.fl.28.010196.000401
[19] DOI: 10.1063/1.858280 · doi:10.1063/1.858280
[20] DOI: 10.1016/j.icheatmasstransfer.2008.07.004 · doi:10.1016/j.icheatmasstransfer.2008.07.004
[21] DOI: 10.1007/s00348-005-0929-0 · doi:10.1007/s00348-005-0929-0
[22] DOI: 10.1016/S0376-0421(98)00014-1 · doi:10.1016/S0376-0421(98)00014-1
[23] Pope S. B., New Journal of Physics 35 pp 1– (2004)
[24] DOI: 10.1080/10618560902776794 · Zbl 1184.76699 · doi:10.1080/10618560902776794
[25] DOI: 10.1002/htj.20036 · doi:10.1002/htj.20036
[26] DOI: 10.1299/jfst.4.188 · doi:10.1299/jfst.4.188
[27] DOI: 10.1115/1.2012502 · doi:10.1115/1.2012502
[28] DOI: 10.1007/s003480000234 · doi:10.1007/s003480000234
[29] DOI: 10.1016/j.jweia.2008.02.034 · doi:10.1016/j.jweia.2008.02.034
[30] Tu J. Y., Computational fluid dynamics: a practical approach (2008) · Zbl 1250.76001
[31] DOI: 10.1016/j.ijheatfluidflow.2007.04.002 · doi:10.1016/j.ijheatfluidflow.2007.04.002
[32] DOI: 10.2514/3.8844 · doi:10.2514/3.8844
[33] Zheng C. R., Numerical investigation of wind loads on high-rise buildings controlled by suction/blowing (2010)
[34] Zheng C. R., Journal of Harbin Institute of Technology (New Series) 15 pp 499– (2008)
[35] DOI: 10.1631/jzus.A0900593 · doi:10.1631/jzus.A0900593
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.