×

zbMATH — the first resource for mathematics

Bethe ansatz for an AdS/CFT open spin chain with non-diagonal boundaries. (English) Zbl 1388.81227
Summary: We consider the integrable open-chain transfer matrix corresponding to a \(Y=0\) brane at one boundary, and a \(Y_{\theta} = 0\) brane (rotated with the respect to the former by an angle \(\theta\)) at the other boundary. We determine the exact eigenvalues of this transfer matrix in terms of solutions of a corresponding set of Bethe equations.

MSC:
81R12 Groups and algebras in quantum theory and relations with integrable systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999) · Zbl 0969.81047
[2] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large-N field theories, string theory and gravity, Phys. Rept., 323, 183, (2000) · Zbl 1368.81009
[3] Metsaev, RR; Tseytlin, AA, Type IIB superstring action in ads_{5} × S\^{5} background, Nucl. Phys., B 533, 109, (1998) · Zbl 0956.81063
[4] Brink, L.; Schwarz, JH; Scherk, J., Supersymmetric Yang-Mills theories, Nucl. Phys., B 121, 77, (1977)
[5] Beisert, N.; etal., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3, (2012)
[6] Klose, T., Review of AdS/CFT integrability, chapter IV.3: N = 6 Chern-Simons and strings on ads_{4} × CP\^{3}, Lett. Math. Phys., 99, 401, (2012) · Zbl 1244.81054
[7] Sfondrini, A., Towards integrability for ads_{3}/CFT_{2}, J. Phys., A 48, 023001, (2015) · Zbl 1309.81243
[8] N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2|2) Symmetry, J. Stat. Mech. (2007) P01017, [nlin/0610017].
[9] Martins, MJ; Melo, CS, The Bethe ansatz approach for factorizable centrally extended S-matrices, Nucl. Phys., B 785, 246, (2007) · Zbl 1150.82304
[10] Beisert, N.; Staudacher, M., Long-range PSU(2, 2|4) Bethe ansatze for gauge theory and strings, Nucl. Phys., B 727, 1, (2005) · Zbl 1126.81328
[11] Berenstein, D.; Vazquez, SE, Integrable open spin chains from giant gravitons, JHEP, 06, 059, (2005)
[12] Hofman, DM; Maldacena, JM, Reflecting magnons, JHEP, 11, 063, (2007) · Zbl 1245.81178
[13] Galleas, W., The Bethe ansatz equations for reflecting magnons, Nucl. Phys., B 820, 664, (2009) · Zbl 1196.82077
[14] Bajnok, Z.; Palla, L., Boundary finite size corrections for multiparticle states and planar AdS/CFT, JHEP, 01, 011, (2011) · Zbl 1214.81132
[15] Bajnok, Z.; Nepomechie, RI; Palla, L.; Suzuki, R., Y-system for Y = 0 brane in planar AdS/CFT, JHEP, 08, 149, (2012) · Zbl 1397.81219
[16] Bajnok, Z.; etal., The spectrum of tachyons in AdS/CFT, JHEP, 03, 055, (2014)
[17] Zoubos, K., Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys., 99, 375, (2012) · Zbl 1244.81057
[18] Martins, M.; Ramos, P., The quantum inverse scattering method for Hubbard-like models, Nucl. Phys., B 522, 413, (1998) · Zbl 1047.82506
[19] Guan, X-W, Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries, J. Phys., A 33, 5391, (2000) · Zbl 1046.82502
[20] Cao, J.; Yang, W-L; Shi, K.; Wang, Y., Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions, Nucl. Phys., B 875, 152, (2013) · Zbl 1282.82011
[21] Y. Wang, W.-L. Yang, J. Cao and K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models, Springer, Heidelberg Germany (2015). · Zbl 1341.82003
[22] Li, Y-Y; Cao, J.; Yang, W-L; Shi, K.; Wang, Y., Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields, Nucl. Phys., B 879, 98, (2014) · Zbl 1284.82022
[23] X. Zhang, J. Cao, W.-L. Yang, K. Shi and Y. Wang, Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields, J. Stat. Mech. (2014) P04031 [arXiv:1312.0376] [INSPIRE].
[24] Arutyunov, G.; Frolov, S., On string S-matrix, bound states and TBA, JHEP, 12, 024, (2007) · Zbl 1246.81182
[25] Beisert, N., The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys., 12, 945, (2008) · Zbl 1146.81047
[26] Arutyunov, G.; Frolov, S., The S-matrix of string bound states, Nucl. Phys., B 804, 90, (2008) · Zbl 1190.81132
[27] Ahn, C.; Nepomechie, RI, Yangian symmetry and bound states in AdS/CFT boundary scattering, JHEP, 05, 016, (2010) · Zbl 1288.81071
[28] Cherednik, IV, Factorizing particles on a half line and root systems, Theor. Math. Phys., 61, 977, (1984) · Zbl 0575.22021
[29] Sklyanin, EK, Boundary conditions for integrable quantum systems, J. Phys., A 21, 2375, (1988) · Zbl 0685.58058
[30] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys.A 9 (1994) 3841 [Erratum ibid.A 9 (1994) 4353] [hep-th/9306002] [INSPIRE]. · Zbl 0985.81714
[31] Bracken, AJ; Ge, X-Y; Zhang, Y-Z; Zhou, H-Q, Integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons, Nucl. Phys., B 516, 588, (1998) · Zbl 0949.82013
[32] Murgan, R.; Nepomechie, RI, Open-chain transfer matrices for AdS/CFT, JHEP, 09, 085, (2008) · Zbl 1245.81125
[33] Nepomechie, RI, An inhomogeneous T-Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin, J. Phys., A 46, 442002, (2013) · Zbl 1278.82013
[34] J. Avan, S. Belliard, N. Grosjean and R.A. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment-IIIProof, arXiv:1506.02147. · Zbl 1331.82011
[35] Gromov, N.; Kazakov, V.; Vieira, P., Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett., 103, 131601, (2009)
[36] F.H.L. Essler, H. Frahm, F. Gohmann, A. Klumper and V.E. Korepin, The One-Dimensional Hubbard Model, Cambridge University Press, Cambridge U.K. (2005). · Zbl 1107.82014
[37] A. Prinsloo, V. Regelskis and A. Torrielli, Integrable open spin-chains in AdS3/CFT2, arXiv:1505.06767 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.