zbMATH — the first resource for mathematics

A convenient basis for the Izergin-Korepin model. (English) Zbl 1404.82023
Summary: We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the \(A_2^{(2)}\) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with \(A_n\) algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
17B81 Applications of Lie (super)algebras to physics, etc.
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
82B23 Exactly solvable models; Bethe ansatz
Full Text: DOI
[1] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G., Quantum Inverse Scattering Method and Correlation Functions, (1993), Cambridge University Press
[2] Wang, Y.; Yang, W.-L.; Cao, J.; Shi, K., Off-Diagonal Bethe Ansatz for Exactly Solvable Models, (2015), Springer Press
[3] Maillet, J. M.; Sanchez de Santos, J., Drinfel’d twists and algebraic Bethe ansatz, Transl. Am. Math. Soc., Ser. 2, 201, 137-178, (1996)
[4] Drinfeld, V. G., Constant quasiclassical solutions of the Yang-Baxter quantum equation, Sov. Math. Dokl., 28, 667-671, (1983)
[5] Kitanine, N.; Maillet, J. M.; Terras, V., Form factors of the XXZ Heisenberg spin-1/2 finite chain, Nucl. Phys. B, 554, 647-678, (1999)
[6] Terras, V., Drinfel’d twists and functional Bethe ansatz, Lett. Math. Phys., 48, 263-276, (1999)
[7] Albert, T. D.; Boos, H.; Flume, R.; Ruhlig, K., Resolution of the nested hierarchy for rational \(s l(n)\) models, J. Phys. A, 33, 4963, (2000)
[8] Albert, T. D.; Boos, H.; Flume, R.; Poghossian, R. H.; Ruhlig, K., An F-twisted XYZ model, Lett. Math. Phys., 53, 201-214, (2000)
[9] Albert, T. D.; Ruhlig, K., Polarization-free generators for the Belavin model, J. Phys. A, 34, 1569, (2001)
[10] Yang, W.-L.; Zhang, Y.-Z.; Zhao, S.-Y., Drinfeld twists and algebraic Bethe ansatz of the supersymmetric t-J model, J. High Energy Phys., 12, (2004); Drinfeld twists and algebraic Bethe ansatz of the supersymmetric model associated with \(U_q(g l(m | n))\), Commun. Math. Phys., 264, 87-114, (2006)
[11] Zhao, S.-Y.; Yang, W.-L.; Zhang, Y.-Z., Drinfeld twists and symmetric Bethe vectors of supersymmetric Fermion models, J. Stat. Mech., 04005, (2005); Determinant representations of correlation functions for the supersymmetric t-J model, Commun. Math. Phys., 268, 505-541, (2006); On the construction of correlation functions for the integrable supersymmetric fermion models, Int. J. Mod. Phys. B, 20, 505-549, (2006)
[12] Izergin, A. G.; Korepin, V. E., The inverse scattering method approach to the quantum Shabat-Mikhailov model, Commun. Math. Phys., 79, 303-316, (1981)
[13] Dodd, R. K.; Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. R. Soc. Lond. A, 352, 481-503, (1977)
[14] Zhiber, A. V.; Shabat, A. B., Klein-Gordon equations with a nontrivial group, Dokl. Akad. Nauk SSSR, 247, 1103, (1979)
[15] Yung, C. M.; Batchelor, M. T., Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices, Nucl. Phys. B, 435, 430-462, (1995)
[16] Batchelor, M. T.; Yung, C. M., Exact results for the adsorption of a flexible self-avoiding polymer chain in two dimensions, Phys. Rev. Lett., 74, 2026, (1995)
[17] Reshetikhin, N. Y., The functional equation method in the theory of exactly soluble quantum systems, Sov. Phys. JETP, 57, 691, (1983)
[18] Tarasov, V. O., Algebraic Bethe ansatz for the Izergin-Korepin R matrix, Theor. Math. Phys., 56, 793-803, (1988)
[19] Martins, M. J., The exact solution and the finite-size behaviour of the \(O s p(1 | 2)\)-invariant spin chain, Nucl. Phys. B, 450, 768-788, (1995)
[20] Fan, H., Bethe ansatz for the Izergin-Korepin model, Nucl. Phys. B, 488, 409-425, (1997)
[21] Lima-Santos, A., Reflection K-matrices for 19-vertex models, Nucl. Phys. B, 558, 637-667, (1999)
[22] Hou, B.-Y.; Yang, W.-L.; Zhang, Y.-Z., The twisted quantum affine algebra \(U_q(A_2^{(2)})\) and correlation functions of the Izergin-Korepin model, Nucl. Phys. B, 556, 485-504, (1999)
[23] Li, G.-L.; Shi, K.-J.; Yue, R.-H., The algebraic Bethe ansatz for the Izergin-Korepin model with open boundary conditions, Nucl. Phys. B, 670, 401-438, (2003)
[24] Sklyanin, E. K., The quantum Toda chain, Lect. Notes Phys., 226, 196-233, (1985); Goryachev-Chaplygin top and the inverse scattering method, J. Sov. Math., 31, 3417-3431, (1985); Separation of variables new trends, Prog. Theor. Phys. Suppl., 118, 35-60, (1995)
[25] Niccoli, G., Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators, J. Stat. Mech., (2012)
[26] Hao, K.; Cao, J.-P.; Li, G.-L.; Yang, W.-L.; Shi, K.; Wang, Y., Exact solution of an \(s u(n)\) spin torus, J. Stat. Mech., (2016); A representation basis for the quantum integrable spin chain associated with the \(s u(3)\) algebra, J. High Energy Phys., 05, (2016)
[27] Göhmann, F.; Korepin, V. E., Solution of the quantum inverse problem, J. Phys. A, 33, 1199, (2000)
[28] Maillet, J. M.; Terras, V., On the quantum inverse scattering problem, Nucl. Phys. B, 575, 627-644, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.