×

On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. (English) Zbl 0921.42017

In this paper, the author uses the relationship between orthogonal polynomials on the unit circle and the real line to derive interesting new results for the unit circle case. Consider the recurrence relation \[ S_{n+1}(x)= xS_n(x)-S_{n-1}(x), \] with \(S_0(x) :=1\), \(S_1(x)=x\) and \(u_n>0\) \(\forall n\). This generates a sequence \(\{S_n\}\) of monic polynomials that are orthogonal with respect to a symmetric measure \(\mu\) on a symmetric real interval \([-2c,2c]\): \[ \int^{2c}_{-2c}S_nS_md\mu=h_n\delta_{nm} (h_n>0). \] Fix a scaling parameter \(d>0\), and relate \(z\) and \(x\) by \(x=d(z^{1/2}+z^{-1/2})\). For \(n\geq 0\), let \[ P_n(z):={d^{-n-1}z^{n/2}\Bigl(z^{1/2}S_{n+1}(x)-{S_{n+1}(2d) \over S_n(2d)}S_n(x)\Bigr)\over z-1}. \] This is the DG (Delsarte-Genin) mapping of \(\{S_n\}\) with parameter \(d\). It is known that the \(\{P_n\}\) satisfy a recurrence of the form \[ P_{n+1}(z)=zP_n(z)-a_nP^*_n(z) \] where \(P_0(z)= P^*_0 (z)=1\), \(| a_n|<1\) and \(P^*_n(z): =z^n\overline {P_n(1/ \overline z})\). Consequently the \(\{P_n\}\) are orthogonal with respect to a measure on the unit circle: \[ \int^{2\pi}_0 P_n\overline {P_m}d\sigma =\kappa_n \delta_{mn} (\kappa_n >0). \] The author shows how different choices of \(d\) may be used to “squeeze” orthogonal polynomials on the circle, yielding new systems of orthogonal polynomials. Moreover, he shows how the DG mapping yields sieved polynomials, both on the circle and the interval, and also circle analogues of the Askey-Wilson polynomials. Finally, some \(q\)-orthogonal polynomials are discussed, as well as the relation of DG to chain sequences and to Bauer’s \(g\)-algorithm.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
30C10 Polynomials and rational functions of one complex variable
30B70 Continued fractions; complex-analytic aspects
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Salam, W. A.; Ismail, M. E.H., A q-beta integral on the unit circle and some biorthogonal rational functions, Proc. Amer. Math. Soc., 121, 553-561 (1995) · Zbl 0835.33011
[2] Askey, R., Comments, Gabor Szegő: Collected Papers (1982), Birkhäuser: Birkhäuser Basel, p. 806-811
[3] Askey, R.; Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1-55 (1985) · Zbl 0572.33012
[4] Badkov, V. M., Systems of orthogonal polynomials explicitly represented by the Jacobi polynomials, Math. Notes, 42, 858-863 (1987) · Zbl 0714.42014
[5] Bauer, F. L., The g-algorithm, J. Soc. Indust. Appl. Math., 8, 1-17 (1960) · Zbl 0106.28203
[6] Cachafeiro, A.; Marcellan, F., Modifications of Toeplitz matrices: Jump functions, Rocky Mountain J. Math., 23, 521-531 (1993) · Zbl 0804.42012
[7] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon & Breach: Gordon & Breach New York · Zbl 0389.33008
[8] Delsarte, P.; Genin, Y., The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process, 34, 470-478 (1986)
[9] Delsarte, P.; Genin, Y., Tridiagonal approach to the algebraic environment of Toeplitz matrices I. Basic results, SIAM J. Matrix Anal. Appl., 12, 220-238 (1991) · Zbl 0728.65020
[10] Delsarte, P.; Genin, Y., Tridiagonal approach to the algebraic environment of Toeplitz matrices. II. Zero and eigenvalue problems, SIAM J. Matrix Anal. Appl., 12, 432-448 (1991) · Zbl 0753.15015
[11] Gasper, G.; Rahman, M., Basic Hypergeometric Series (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0695.33001
[12] Geronimo, J.; Van Assche, W., Orthogonal polynomials via polynomial mappings, Trans. Amer. Math. Soc., 308, 559-581 (1988) · Zbl 0652.42009
[13] Geronimus, Ya. L., On the character of the solution of the moment in the case of limit-periodic associated fractions, Izv. Akad. Nauk SSSR Ser. Mat., 5, 203-210 (1941) · Zbl 0060.26007
[14] Geronimus, Ya. L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. Ser. 1 (1962), Amer. Math. Soc: Amer. Math. Soc Providence, p. 1-78 · Zbl 0146.08903
[15] Geronimus, Ya. L., Orthogonal polynomials, Two Papers on Special Functions. Two Papers on Special Functions, Amer. Math. Soc. Transl. Ser. 2, 108 (1977), Amer. Math. Soc: Amer. Math. Soc Providence, p. 37-130 · Zbl 0373.42007
[16] Golinskii, L.; Nevai, P.; Van Assche, W., Perturbation of orthogonal polynomials on an arc of the unit circle, J. Approx. Theory, 83, 391-422 (1995)
[17] Ismail, M. E.H.; Li, Xin, On sieved orthogonal polynomials. IX. Orthogonality on the unit circle, Pacific J. Math., 153, 289-297 (1992) · Zbl 0771.33007
[18] Ismail, M. E.H.; Masson, D. R., q-Hermite polynomials, biorthogonal rational functions and q-beta integrals, Trans. Amer. Math. Soc., 346, 63-116 (1994) · Zbl 0812.33012
[19] Ismail, M. E.H.; Rahman, M., Ladder operators for Szegő polynomials and related biorthogonal rational functions, Proc. Amer. Math. Soc., 124, 2149-2159 (1996) · Zbl 0864.33014
[20] Jones, W. B.; Thron, W. J., Continued Fractions: Analytic Theory and Applications. Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and Its Applications, 11 (1980), Addison-Wesley: Addison-Wesley Reading · Zbl 0445.30003
[21] Koekoek, R.; Swarttouw, R. F., Report (1994)
[22] Karchev, S.; Mironov, A., Integrable structures of unitary matrix models, Internat. J. Modern Phys. A, 7, 4803-4824 (1992) · Zbl 0954.81535
[23] Lasser, R., Orthogonal polynomials and hupergroups. II. The symmetric case, Trans. Amer. Math. Soc., 341, 749-770 (1994) · Zbl 0804.42013
[24] Magnus, A., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comput. Appl. Math., 65, 253-365 (1995) · Zbl 0847.33008
[25] Magnus, A., Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials, J. Comput. Appl. Math., 57, 215-237 (1995) · Zbl 0828.42012
[26] Peherstorfer, F.; Steinbauer, R., Orthogonal polynomials on arcs of the unit circle, I, J. Approx. Theory, 85, 140-184 (1996) · Zbl 0861.42014
[27] Ronveaux, A., Discrete semi-classical orthogonal polynomials, J. Approx. Theory, 46, 403-407 (1986) · Zbl 0591.42015
[28] Spiridonov, V.; Vinet, L.; Zhedanov, A., Difference Schrödinger operators with linear and exponential spectra, Lett. Math. Phys., 29, 63-73 (1993) · Zbl 0790.33017
[29] Spiridonov, V.; Zhedanov, A., Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal., 2, 369-398 (1996) · Zbl 0859.33017
[30] Szegő, G., Orthogonal Polynomials (1975), Amer. Math. Soc: Amer. Math. Soc Providence · JFM 65.0278.03
[31] Wall, H. S., Some recent developments in the theory of continued fraction, Bull. Amer. Math. Soc., 47, 405-423 (1941) · Zbl 0027.30401
[32] Wall, H. S., Analytic Theory of Continued Fractions (1973), Chelsea: Chelsea New York · Zbl 0035.03601
[33] Widom, H., The strong limit theorem for circular arcs, Indiana Univ. Math. J., 21, 277-283 (1971) · Zbl 0213.34903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.