×

Internal gravity wave radiation from a stratified turbulent wake. (English) Zbl 1460.76152

Summary: The near-field energetics and directional properties of internal gravity waves (IGWs) radiated from the turbulent wake of a sphere towed through a linearly stratified fluid are investigated using a series numerical experiments. Simulations have been performed for an initial Reynolds number \(Re\equiv UD/ \nu \in \{5\times 10^3,10^5,4\times 10^5\}\) and internal Froude number \(Fr\equiv 2U/ND\in \{4,16,64\}\), defined using body-based scales – \(D\), the sphere diameter; \(U\), the tow speed; and \(N\), the Brunt-Väisälä frequency. Snapshots of temporally evolving wake flow fields are sampled over the full wake evolution. The energy extracted from the wake through internal wave radiation is quantified by computing the total wave power emitted through a wake-following elliptic cylinder. The total time-integrated wave energy radiated is found to increase with \(Re\) and decrease with \(Fr\). The peak radiated wave power occurs at early times, near to the onset of buoyancy control, and is found to be approximately unchanged in magnitude as \(Re\) is increased. For the two higher \(Re\) considered, at late times, IGWs continue to be emitted – accounting for a distinct increase in total radiated wave energy. The most powerful IGWs are radiated out of the wake at a wide range of angles for \(Nt<10\), at \(20^\circ -70^\circ\) to the horizontal for \(10\leqslant Nt\leqslant 25\), and nearly parallel to the horizontal late in the non-equilibrium regime of wake evolution. Internal wave radiation is found to be an important sink for wake kinetic energy after \(Nt=10\), suggesting wave radiation cannot be neglected when modelling stratified turbulent wakes in geophysical and ocean engineering applications.

MSC:

76B55 Internal waves for incompressible inviscid fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76F45 Stratification effects in turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdilghanie, A. M.2010 A numerical investigation of turbulence-driven and forced generation of internal gravity waves in stratified mid-water. PhD thesis, Cornell University.
[2] Abdilghanie, A. M. & Diamessis, P. J.2013The internal gravity wave field emitted by a stably stratified turbulent wake. J. Fluid Mech.720, 104-139. · Zbl 1284.76119
[3] Abkar, M. & Porte-Agel, F.2015Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys. Fluids27, 035104.
[4] Abramowitz, M. & Stegun., I. A.1972Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 9. Dover. · Zbl 0543.33001
[5] Allaerts, D. & Meyers, J. N.2018Gravity waves and wind-farm efficiency in neutral and stable conditions. Boundary-Layer Meteorol.166 (2), 269-299.
[6] Augier, P., Chomaz, J.-M. & Billant, P.2012Spectral analysis of the transition to turbulence from a dipole in stratified fluid. J. Fluid Mech.713, 86-108. · Zbl 1284.76185
[7] Bonneton, P., Chomaz, J. M. & Hopfinger, E. J.1993Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech.254, 23-40.
[8] Boyd, J. P.2012Numerical, perturbative and Chebyshev inversion of the incomplete elliptic integral of the second kind. Appl. Maths Comput.218 (13), 7005-7013. · Zbl 1243.65035
[9] Brandt, A. & Rottier, J. R.2015The internal wavefield generated by a towed sphere at low Froude number. J. Fluid Mech.769, 103-129.
[10] Brucker, K. A. & Sarkar, S.2010A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech.652, 373-404. · Zbl 1193.76044
[11] De Bruyn Kops, S. M. & Riley, J. J.2019The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech.860, 787-821. · Zbl 1415.76255
[12] Bühler, O.2014Waves and Mean Flows. Cambridge University Press. · Zbl 1286.86002
[13] Dallard, T. & Spedding, G. R.19932D wavelet transforms: generalisation of the Hardy space and application to experimental studies. Eur. J. Mech. (B/Fluids)12, 107-134. · Zbl 0771.42022
[14] Diamessis, P. J., Domaradzki, J. A. & Hesthaven, J. S.2005A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J. Comput. Phys.202 (1), 298-322. · Zbl 1061.76054
[15] Diamessis, P. J., Spedding, G. R. & Domaradzki, J. A.2011Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech.671, 52-95. · Zbl 1225.76167
[16] Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A.2002Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech.473, 83-101. · Zbl 1026.76026
[17] Gibson, C. H., Nabatov, V. & Ozmidov, R.1993Measurements of turbulence and fossil turbulence near Ampere seamount. Dyn. Atmos. Oceans19, 175-204.
[18] Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J.2001Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids13 (12), 3783-3802. · Zbl 1184.76191
[19] Karniadakis, G. E., Israeli, M. & Orszag, S.1991High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys.97 (2), 414-443. · Zbl 0738.76050
[20] Lamb, K. G.2007Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont. Shelf Res.27 (9), 1208-1232.
[21] Lighthill, J.2001Waves in Fluids. Cambridge University Press. · Zbl 0976.76001
[22] Lin, J.-T. & Pao, Y.-H.1979Wakes in stratified fluids. Annu. Rev. Fluid Mech.11 (1), 317-338.
[23] Maffioli, A., Brethouwer, G. & Lindborg, E.2016Mixing efficiency in stratified turbulence. J. Fluid Mech.794, R3. · Zbl 1462.76114
[24] Maffioli, A., Davidson, P. A., Dalziel, S. B. & Swaminathan, N.2014The evolution of a stratified turbulent cloud. J. Fluid Mech.739, 229-253.
[25] Meunier, P., Diamessis, P. J. & Spedding, G. R.2006Self-preservation in stratified momentum wakes. Phys. Fluids18, 106601. · Zbl 1138.76326
[26] Olbers, D., Willebrand, J. & Eden, C.2012Ocean Dynamics. Springer Science & Business Media. · Zbl 1296.86001
[27] Orszag, S. A. & Pao, Y. H.1975Numerical computation of turbulent shear flows. Adv. Geophys.18 (1), 225-236.
[28] Pao, H. P., Lai, R. Y. & Schemm, C. E.1982 Vortex trails in stratified fluids. Tech. Rep. 3(1). Johns Hopkins Applied Physics Laboratory Technical Digest.
[29] Pawlak, G., Maccready, P., Edwards, K. A. & Mccabe, R.2003Observations on the evolution of tidal vorticity at a stratified deep water headland. Geophys. Res. Lett.30 (24), 2234.
[30] Perfect, B., Kumar, N. & Riley, J. J.2018Vortex structures in the wake of an idealized seamount in rotating, stratified flow. Geophys. Res. Lett.45 (17), 9098-9105.
[31] Pham, H. T., Sarkar, S. & Brucker, K. A.2009Dynamics of a stratified shear layer above a region of uniform stratification. J. Fluid Mech.630, 191-223. · Zbl 1181.76079
[32] Plougonven, R. & Zeitlin, V.2002Internal gravity wave emission from a pancake vortex: an example of wave-vortex interaction in strongly stratified flows. Phys. Fluids14 (3), 1259-1268. · Zbl 1185.76480
[33] Redford, J. A., Lund, T. S. & Coleman, G. N.2015A numerical study of a weakly stratified turbulent wake. J. Fluid Mech.776, 568-609.
[34] Riley, J. J. & De Bruyn Kops, S. M.2003Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids15, 2047. · Zbl 1186.76446
[35] Riley, J. J. & Lindborg, E.2012Recent progress in stratified turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), pp. 269-317. Cambridge University Press. · Zbl 1299.76092
[36] Rotunno, R., Grubisic, V. & Smolarkiewicz, P. K.1999Vorticity and potential vorticity in mountain wakes. J. Atmos. Sci.56 (16), 2796-2810.
[37] Shete, K. P. & De Bruyn Kops, S. M.2020Area of scalar isosurfaces in homogeneous isotropic turbulence as a function of Reynolds and Schmidt numbers. J. Fluid Mech.883, A38. · Zbl 1430.76319
[38] Spedding, G. R.1997The evolution of initially turbulent bluff-body wakes at high internal froude number. J. Fluid Mech.337, 283-301.
[39] Spedding, G. R.2014Wake signature detection. Annu. Rev. Fluid Mech.46, 273-302. · Zbl 1297.76066
[40] Spedding, G. R., Browand, F. K., Bell, R. & Chen, J.2000Internal waves from intermediate, or late-wake vortices. In Stratified Flows I Proceedings of the 5th International Symposium on Stratied Flows, Vancouver, Canada, pp. 113-118. UBC.
[41] Spedding, G. R., Browand, F. K. & Fincham, A. M.1996Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech.314, 53-103.
[42] Spiegel, E. A. & Veronis, G.1960On the boussinesq approximation for a compressible fluid. Astrophys. J.131, 442.
[43] Sutherland, B. R.2011Internal Gravity Waves. Cambridge University Press.
[44] Taylor, J. R. & Sarkar, S.2007Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech.590, 331-354. · Zbl 1141.76409
[45] Tennekes, H. & Lumley, J. L.1972A First Course in Turbulence. MIT Press. · Zbl 0285.76018
[46] Trefethen, L. N.2000Spectral Methods in MATLAB. SIAM. · Zbl 0953.68643
[47] Voisin, B.1995Internal wave generation by turbulent wakes. In Mixing in Geophysical Flows, pp. 291-301. CIMNE.
[48] Watanabe, T., Riley, J. J., De Bruyn Kops, S. M., Diamessis, P. J. & Zhou, Q.2016Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech.797, R1. · Zbl 1422.76091
[49] Zhou, Q.2015 Far-field evolution of turbulence-emitted internal waves and Reynolds number effects on a localized stratified turbulent flow. PhD thesis, Cornell University, Ithaca, New York.
[50] Zhou, Q. & Diamessis, P. J.2016Surface manifestation of internal waves emitted by submerged localized stratified turbulence. J. Fluid Mech.798, 505-539. · Zbl 1422.76092
[51] Zhou, Q. & Diamessis, P. J.2019Large-scale characteristics of stratified wake turbulence at varying Reynolds number. Phys. Rev. Fluids4, 084802.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.