×

Exact soliton solution for the fourth-order nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity. (English) Zbl 1352.35139

Summary: In this paper, we investigate the fourth-order nonlinear Schrödinger equation with parameterized nonlinearity that is generalized from regular cubic-quintic formulation in optics and ultracold physics scenario. We find the exact solution of the fourth-order generalized cubic-quintic nonlinear Schrödinger equation through modified \(F\)-expansion method, identifying the particular bright soliton behavior under certain external experimental setting, with the system’s particular nonlinear features demonstrated.

MSC:

35Q40 PDEs in connection with quantum mechanics
81-08 Computational methods for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Serkin, Novel soliton solutions of the nonlinear Schrödinger equation model, Physical Review Letters 85 pp 4502– (2000) · doi:10.1103/PhysRevLett.85.4502
[2] Serkin, Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers, Optics Communication 196 pp 159– (2001) · doi:10.1016/S0030-4018(01)01365-7
[3] Serkin, Nonautonomous solitons in external potentials, Physical Review Letters 98 pp 074102– (2007) · doi:10.1103/PhysRevLett.98.074102
[4] Hao, Solutions for the propagation of light in nonlinear optical media with spatially inhomogeneous nonlinearities, Optics Communication 281 pp 1256– (2008) · doi:10.1016/j.optcom.2007.10.093
[5] Zhang, A Generalized (G’/G)-Expansion Method for the Nonlinear Schrödinger Equation with Variable Coefficients, Zeitschrift fur Naturforschung 64a pp 691– (2009)
[6] Zhang, Dynamics of Bright/Dark Solitons in Bose-Einstein Condensates with Time-Dependent Scattering Length and External Potential, Chinese Physics Letters 25 pp 39– (2008) · doi:10.1088/0256-307X/25/1/011
[7] Fei, Chinese Journal of Physics 51 pp 200– (2013)
[8] He, Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials, Physical Review E 83 pp 066607– (2011) · doi:10.1103/PhysRevE.83.066607
[9] Davydova, Schrödinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity, Physica D 156 pp 260– (2011) · Zbl 0973.35171 · doi:10.1016/S0167-2789(01)00269-X
[10] Hasegawa, Applied Physics Letters 23 pp 171– (1973) · doi:10.1063/1.1654847
[11] Mollenauer, Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers, Physical Review Letters 45 pp 1095– (1980) · doi:10.1103/PhysRevLett.45.1095
[12] Kohl, Optical soliton perturbation in a non-Kerr law media, Optics & Laser Technology 40 pp 647– (2008) · doi:10.1016/j.optlastec.2007.10.002
[13] Kohl, Soliton perturbation theory for dispersion-managed optical fibers, Journal of Nonlinear Optical Physics & Materials 18 pp 227– (2009) · doi:10.1142/S0218863509004592
[14] Ohta, Stability and instability of standing saves for one dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Mathematical Journal 18 pp 68– (1995) · Zbl 0868.35111 · doi:10.2996/kmj/1138043354
[15] Zhou, Periodic wave solutions to a coupled KdV equations with variable coefficients, Physics Letters A 308 pp 31– (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
[16] Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons & Fractals 31 pp 95– (2007) · Zbl 1138.35385 · doi:10.1016/j.chaos.2005.09.030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.