×

A novel optimal control method for impulsive-correction projectile based on particle swarm optimization. (English) Zbl 1372.49046

Summary: This paper presents a new parametric optimization approach based on a modified Particle Swarm Optimization (PSO) to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of a minimal working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

MSC:

49N25 Impulsive optimal control problems
49M20 Numerical methods of relaxation type
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Corriveau, D.; Berner, C.; Fleck, V., Trajectory correction using impulse thrusters for conventional artillery projectiles, Proceedings of the IBC 23rd International Symposium on Ballistics
[2] Calise, A. J.; El-Shirbiny, H. A., An analysis of aerodynamic control for direct fire spinning projectiles, Proceedings of the AIAA Guidance, Navigation and Control Conference · doi:10.2514/6.2001-4217
[3] Doraiswamy, S.; Candler, G. V., Detached eddy simulations and Reynolds-averaged Navier-Stokes calculations of a spinning projectile, Journal of Spacecraft and Rockets, 45, 5, 935-945 (2008) · doi:10.2514/1.31935
[4] Lin, D.; Xu, J.; Song, J., Design of pulse control parameter for projectile with ballistic correction, Armament Automation, 24, 3, 40-43 (2005)
[5] Li, C.-W.; Gao, M.; Song, W.-D.; Guo, Q.-W., Optimization of trajectory correction method of rocket projectile based on pulse jet control, Journal of Ballistics, 26, 4, 24-29 (2014)
[6] Tian, X.; Chen, G.; Xin, C., External ballistic real-time algorithm of trajectory correction projectile, Journal of Test and Measurement Technology of NCIT, 14, 1, 44-47 (2000)
[7] Wang, Z.; Ding, S.; Wang, L., Flight stability condition for a projectile of corrected trajectory with impulse moments, Journal of Nanjing University of Science and Technology, 24, 4, 322-325 (2000)
[8] Liu, X.; Willms, A. R., Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Mathematical Problems in Engineering, 2, 4, 277-299 (1996) · Zbl 0876.93014 · doi:10.1155/s1024123x9600035x
[9] Rempala, R.; Zabczyk, J., On the maximum principle for deterministic impulse control problems, Journal of Optimization Theory and Applications, 59, 2, 281-288 (1988) · Zbl 0631.49010 · doi:10.1007/bf00938313
[10] Prado, A. F. B. A., Bi-impulsive control to build a satellite constellation, Nonlinear Dynamics and Systems Theory, 5, 2, 169-175 (2005) · Zbl 1128.70015
[11] Menon, P. K. A.; Cheng, V. H. L.; Lin, C. A.; Briggs, M. M., High performance missile synthesis with trajectory and propulsion system optimization, Journal of Spacecraft and Rockets, 24, 6, 552-557 (1987) · doi:10.2514/3.25952
[12] Sun, R.-S.; Ming, C., Velocity control for coning motion missile system using direct discretization method, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.93195 · doi:10.1155/2015/716547
[13] Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Programming (2001), SIAM · Zbl 0995.49017
[14] Fahroo, F.; Ross, I. M., Costate estimation by a Legendre pseudospectral method, Journal of Guidance, Control, and Dynamics, 24, 2, 270-277 (2001) · doi:10.2514/2.4709
[15] Khader, M. M.; Sweilam, N. H.; Kota, W. Y., Cardinal functions for Legendre pseudo-spectral method for solving the integro-differential equations, Journal of the Egyptian Mathematical Society, 22, 3, 511-516 (2014) · Zbl 1302.65281 · doi:10.1016/j.joems.2013.10.004
[16] Darby, C. L.; Hager, W. W.; Rao, A. V., Direct trajectory optimization using a variable low-order adaptive pseudospectral method, Journal of Spacecraft and Rockets, 48, 3, 433-445 (2011) · doi:10.2514/1.52136
[17] Graichen, K.; Petit, N., Constructive methods for initialization and handling mixed state-input constraints in optimal control, Journal of Guidance, Control, and Dynamics, 31, 5, 1334-1343 (2008) · doi:10.2514/1.33870
[18] Yokoyama, N.; Suzuki, S., Modified genetic algorithm for constrained trajectory optimization, Journal of Guidance, Control, and Dynamics, 28, 1, 139-144 (2005) · doi:10.2514/1.3042
[19] Premalatha, K.; Natarajan, A. M., Hybrid PSO and GA for global maximization, International Journal of Open Problems in Computer Science and Mathematics, 2, 4, 597-608 (2009) · Zbl 1206.90225
[20] Pontani, M.; Conway, B. A., Particle swarm optimization applied to space trajectories, Journal of Guidance, Control, and Dynamics, 33, 5, 1429-1441 (2010) · doi:10.2514/1.48475
[21] Eberhart, R.; Kennedy, J., New optimizer using particle swarm theory, Proceedings of the 6th International Symposium on Micro Machine and Human Science
[22] Shi, Y.; Eberhart, R. C., A modified particle swarm optimizer, Proceedings of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence · doi:10.1109/ICEC.1998.699146
[23] Laskari, E. C.; Parsopoulos, K. E.; Vrahatis, M. N., Particle swarm optimization for integer programming, Proceedings of the Congress on Evolutionary Computation (CEC ’02) · doi:10.1109/cec.2002.1004478
[24] Couceiro, M.; Sivasundaram, S., Novel fractional order particle swarm optimization, Applied Mathematics & Computation, 283, 36-54 (2016) · Zbl 1410.90176 · doi:10.1016/j.amc.2016.02.007
[25] Pires, E. J. S.; Machado, J. A. T.; de Moura Oliveira, P. B.; Cunha, J. B.; Mendes, L., Particle swarm optimization with fractional-order velocity, Nonlinear Dynamics, 61, 1, 295-301 (2010) · Zbl 1204.90119 · doi:10.1007/s11071-009-9649-y
[26] Yang, W.; Wu, W.; Fan, Y.; Li, Z., Particle swarm optimization based on local attractors of ordinary differential equation system, Discrete Dynamics in Nature and Society, 2014 (2014) · Zbl 1419.90119 · doi:10.1155/2014/628357
[27] Chang, S.; Cao, X.; Wang, Z.; Yuwen, C., Approach of optimal design of parameters for impulse-correction projectile, Journal of Ballistics, 25, 1, 36-54 (2013)
[28] Yang, H.; Dou, L.; Gan, M., A particle swarm optimization for fuel-optimal impulsive control problems of guided projectile, Proceedings of the 25th Chinese Control and Decision Conference (CCDC ’10), IEEE · doi:10.1109/ccdc.2010.5498660
[29] Rahimi, A.; Kumar, K. D.; Alighanbari, H., Particle swarm optimization applied to spacecraft reentry trajectory, Journal of Guidance, Control and Dynamics, 36, 1, 307-310 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.