×

Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. (English) Zbl 1439.74455

Summary: We present an isogeometric thin shell formulation for multi-patches based on rational splines over hierarchical T-meshes (RHT-splines). Nitsche’s method is employed to efficiently couple the patches. The RHT-splines have the advantages of allowing a computationally feasible local refinement, are free from linear dependence, possess high-order continuity and satisfy the partition of unity and non-negativity. In addition, the \(C^1\) continuity of the RHT-splines avoids the rotational degrees of freedom. The good performance of the present method is demonstrated by a number of numerical examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74K25 Shells
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bischoff, M.; Bletzinger, K.-U.; Wall, W. A.; Ramm, E., Models and Finite Elements for Thin-Walled Structures (2004), John Wiley and Sons: John Wiley and Sons New York
[2] P. K.; Belytschko, T., Analysis of thin shells by the element free Galerkin method, Int. J. Solids Struct., 33, 20-22, 3057-3080 (1996) · Zbl 0929.74126
[3] Bathe, K. J.; Dvorkin, E., Our discrete Kirchhoff and isoparametric shell elements for non-linear analysis - An assessment, Comput. Struct., 16, 89-98 (1983) · Zbl 0498.73076
[4] Millan, D.; Rosolen, A.; Arroyo, M., Thin shell analysis from scattered points with maximum-entropy approximants, Internat. J. Numer. Methods Engrg., 85, 6, 723-751 (2011) · Zbl 1217.74147
[5] Wang, D.; Chen, J. S., Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation, Comput. Methods Appl. Mech. Engrg., 193, 1065-1083 (2004) · Zbl 1060.74675
[6] Chen, J. S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in cartesian coordinates, Internat. J. Numer. Methods Engrg., 68, 151-172 (2006) · Zbl 1130.74055
[7] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates, Finite Elem. Anal. Des., 47, 5, 519-535 (2011)
[8] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput. Methods Appl. Mech. Engrg., 198, 2, 165-177 (2008) · Zbl 1194.74453
[9] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), McGraw-Hill: McGraw-Hill New York · Zbl 0114.40801
[10] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[11] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[12] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, T. E., 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, International Journal for Numerical Methods in Engineering, 65, 1-3, 207-235 (2011) · Zbl 1428.76086
[13] Thai, C. H.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T. H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS based isogeometric approach, Internat. J. Numer. Methods Engrg. (2012) · Zbl 1253.74007
[14] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg. (2012) · Zbl 1348.65055
[15] Amiri, F.; Millan, D.; Shen, Y.; Rabczuk, T.; Arroyo, M., Phase-field modeling of fracture in linear thin shells, Theor. Appl. Fract. Mech., 69, 102-109 (2014)
[16] Kruse, R.; Nguyen-Thanh, N.; De Lorenzis, L.; Hughes, T. J.R., Isogeometric collocation for large deformation elasticity and frictional contact problems, Comput. Methods Appl. Mech. Engrg., 296, 73-112 (2015) · Zbl 1423.74649
[17] Kiendl, J.; Ambati, M.; Lorenzis, L. De; Gomez, H.; Reali, A., Phase-field description of brittle fracture in plates and shells, Comput. Methods Appl. Mech. Engrg. (2016), in press · Zbl 1439.74357
[18] Ambati, M.; De Lorenzis, L., Phase-field modeling of brittle and ductile fracture in shells with isogeometric nurbs-based solid-shell elements, Comput. Methods Appl. Mech. Engrg. (2016), in press · Zbl 1439.74338
[19] Cottrell, J. A.; Hughes, T. J.R; Reali, A., Studies of refinement and continuity in geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183 (2007) · Zbl 1173.74407
[20] Benson, D. J.; Bazilevs, Y.; Hughes, M. C. Hsu T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276-289 (2010) · Zbl 1227.74107
[21] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902-3914 (2009) · Zbl 1231.74422
[22] Chen, L.; Nguyen-Thanh, N.; Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Limbert, G., Explicit finite deformation analysis of isogeometric membranes, Comput. Methods Appl. Mech. Engrg., 277, 104-130 (2014) · Zbl 1423.74525
[23] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; Lorenzis, L. De; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291 (2015) · Zbl 1423.74811
[24] Kiendl, J.; Ming-Chen, H.; Michael C. H. Wu and, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 280-303 (2015) · Zbl 1423.74177
[25] Caseiroa, J. F.; Reali, R. A.F. Valenteand A.; Kiendl, J.; Auricchio, F.; de Sousa, R. J. Alves, Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Comput. Methods Appl. Mech. Engrg., 284, 861-880 (2015) · Zbl 1423.74167
[26] Duong, T. X.; Roohbakhshan, F.; Sauer, R. A., A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries, Computer Methods in Applied Mechanics and Engineering (2016) · Zbl 1439.74409
[27] Niiranen, J.; Kiendl, J.; Niemi, A. H.; Reali, A., Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates, Comput. Methods Appl. Mech. Engrg. (2016)
[28] Rabczuk, T.; Areias, P. M.A., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. Methods Appl. Mech. Engrg., 16, 2, 115-130 (2006)
[29] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, Internat. J. Numer. Methods Engrg., 72, 524-548 (2007) · Zbl 1194.74537
[30] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R; Lipton, S.; Scottand, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263 (2010) · Zbl 1227.74123
[31] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. Methods Appl. Mech. Engrg., 199, 437-1445 (2009) · Zbl 1231.65027
[32] Li, X.; Scott, M. A., Analysis-suitable t-splines: Characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 1141-1164 (2014) · Zbl 1292.41004
[33] Wang, H.; He, Y.; Li, X.; Gu, X.; Qin, H., Polycube splines, Comput. Aided Des., 40, 721-733 (2008) · Zbl 1206.65038
[34] Dokken, T.; Skytt, V., Locally refined splines, IV European Congress on Computational Mechanics (ECCM), Paris, France (2010)
[35] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 76-86 (2008)
[36] Li, X.; Deng, J.; Chen, F., Surface modeling with polynomial splines over hierarchical T-meshes, Vis. Comput., 23, 1027-1033 (2007)
[37] Li, X.; Deng, J.; Chen, F., Polynomial splines over general T-meshes, Vis. Comput., 26, 277-286 (2010)
[38] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S.; Rabczuk, T., Isogeometric finite element analysis using polynomial splines over hierarchical T-meshes, Mater. Sci. Eng., 1 (2010) · Zbl 1260.74029
[39] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids., 200, 21-22, 1892-1908 (2011) · Zbl 1228.74091
[40] Tian, L.; Chen, F.; Dua, Q., Adaptive finite element methods for elliptic equations over hierarchical T-meshes, J. Comput. Appl. Math., 236, 878-891 (2011) · Zbl 1231.65222
[41] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3410-3424 (2011) · Zbl 1230.74230
[42] Wang, P.; Xua, J.; Deng, J.; Chen, F., Adaptive isogeometric analysis using rational PHT-splines, Comput. Aided Des., 43, 1438-1448 (2011)
[43] Nguyen-Thanh, N.; Muthu, J.; Zhuang, X.; Rabczuk, T., An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics, Comput. Mech., 53, 369-385 (2014) · Zbl 1398.74381
[45] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 1163-1182 (2014) · Zbl 1398.74379
[46] Ruess, M.; Schillinger, D.; zcan, A. I.Ö.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[47] Guo, Y.; Ruess, M., Nitsches method for a coupling of isogeometric thin shells and blended shell structures, Comput. Methods Appl. Mech. Engrg., 284, 881-905 (2015) · Zbl 1423.74573
[48] Kiendl, J.; Bazilevs, Y.; Hsu, M.-C.; Wüchner, R.; Bletzinger, K.-U., The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Engrg., 199, 2403-2416 (2010) · Zbl 1231.74482
[49] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K. U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, International Journal for Numerical Methods in Engineering, 97, 473-504 (2014) · Zbl 1352.74315
[50] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, International Journal for Numerical Methods in Engineering, 33, 1331-1364 (1992) · Zbl 0769.73084
[51] Deng, J.; Chen, F.; Feng, Y., Dimensions of spline spaces over T-meshes, J. Comput. Appl. Math., 194, 267-283 (2006) · Zbl 1093.41006
[52] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), Wiley · Zbl 0959.74001
[53] Simo, J. C.; Fox, D. D., On a stress resultant geometrically exact shell-model 1. Formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267-304 (1989) · Zbl 0692.73062
[54] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell-model 2. The linear-theory - computational aspects, Comput. Methods Appl. Mech. Engrg., 73, 53-92 (1989) · Zbl 0724.73138
[55] S. Hosseini J. J.C. Remmers, C. V. Verhoosel; Borst, R. D., An isogeometric solid-like shell element for nonlinear analysis, Internat. J. Numer. Methods Engrg., 95, 238-256 (2013) · Zbl 1352.74362
[56] Koiter, W., On the mathematical foundation of shell theory, Actes Congres Inter. Math., 269, 123-130 (1970) · Zbl 0232.73094
[57] Babuska, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Internat. J. Numer. Methods Engrg., 37, 1073-1123 (1994) · Zbl 0811.65088
[58] Behrooz, H.; Ahmad, G.; Mehdi, T., An isogeometrical approach to error estimation and stress recovery, Eur. J. Mech. A Solids, 31, 101-109 (2012) · Zbl 1278.74169
[59] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), John Wiley & Sons: John Wiley & Sons NewYork · Zbl 1008.65076
[60] Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. S.J., Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Engrg., 51, 221-258 (1985) · Zbl 0581.73091
[61] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, T. E., 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, International Journal for Numerical Methods in Engineering, 65, 207-235 (2011) · Zbl 1428.76086
[62] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wuchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: Fluid structure interaction modeling with composite blades, Internat. J. Numer. Methods Engrg., 65, 236-253 (2011) · Zbl 1428.76087
[63] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 1551-1569 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.