×

Alpha-theory: An elementary axiomatics for nonstandard analysis. (English) Zbl 1038.26019

In the early days of the development of the methods of nonstandard analysis, an interest arose to develop an axiomatic approach. This was, however, to some extent accomplished by the so-called \(\Omega\)-calculus by C. Schmieden and D. Laugwitz and later refinements of D. Laugwitz. This approach is based on adding a new symbol \(\Omega\) (the ghost of an infinitely large number) and postulating that if a “statement” about the real number system holds for sufficiently large numbers, then it holds for \(\Omega\). In this paper, the authors present what they call the Alpha-Theory, which presents a beautiful strengthening of the \(\Omega\) theory and has the full strength of Robinson’s nonstandard analysis. This is accomplished by a list of five easy to grasp axioms which are given the names Extension Axiom, Composition Axiom, Number Axiom, Pair Axiom, and Internal set Axiom, all formulated in ZFC enlarged with a new symbol \(\alpha\). The \(\alpha\)-calculus is warmly recommended to those who are interested in finding out what Robinson’s theory is all about. Even the specialists in the field will find a thing or two to ponder.

MSC:

26E35 Nonstandard analysis
03H05 Nonstandard models in mathematics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Arkeryd, L. O.; Cutland, N. J.; Henson, C. W., Nonstandard Analysis — Theory and Applications. Nonstandard Analysis — Theory and Applications, NATO ASI Series C, 493 (1997), Kluwer Academic Publishers: Kluwer Academic Publishers N.Y.) · Zbl 0885.00047
[2] Ballard, D.; Hrbàček, K., Standard foundations for nonstandard analysis, J. Symb. Logic, 57, 471-478 (1992)
[3] Benci, V., A construction of a nonstandard universe, (Albeverio, S.; etal., Advances in Dynamical Systems and Quantum Physics (1995), World Scientific), 207-237
[4] Benci, V., An algebraic approach to nonstandard analysis, (Buttazzo, G.; Marino, A.; Murthy, M. K.V., Calculus of Variations and Partial Differential Equations (1999), Springer-Verlag), 285-326 · Zbl 0973.26017
[5] V. Benci and M. Di Nasso, A ring homomorphism is enough to get nonstandard analysis; V. Benci and M. Di Nasso, A ring homomorphism is enough to get nonstandard analysis · Zbl 1062.03066
[6] Benci, V.; Di Nasso, M., Numerosities of labelled sets: a new way of counting, Advances in Math., 173, 50-67 (2003) · Zbl 1028.03042
[7] V. Benci and M. Di Nasso, book in preparation.; V. Benci and M. Di Nasso, book in preparation.
[8] Benedikt, M., Ultrafilters which extend measures, J. Symb. Logic, 63, 638-662 (1998) · Zbl 0911.03033
[9] Blass, A., The Rudin-Keisler ordering of P-points, Trans. Am. Math. Soc., 179, 145-166 (1973) · Zbl 0269.02025
[10] Blass, A., Ultrafilters: where topological dynamics = algebra = combinatorics, (Topology Proc., 18 (1993)), 33-56 · Zbl 0856.54042
[11] Boffa, M., Forcing et négation de l’axiome de fondement, Mém. Acad. Sc. Belg., tome XL, fasc. 7 (1972) · Zbl 0286.02068
[12] Booth, D., Ultrafilters on a countable set, Ann. of Math. Logic, 2, 1-24 (1970) · Zbl 0231.02067
[13] Chang, C. C.; Keisler, H. J., Model Theory, ((1990), North-Holland) · Zbl 0697.03022
[14] Choquet, G., Construction d’ultrafiltres sur ℕ, Bull. Sc. Math., 92, 41-48 (1968) · Zbl 0157.53101
[15] Choquet, G., Deux classes remarquables d’ultrafiltres sur ℕ, Bull. Sc. Math., 92, 143-153 (1968) · Zbl 0162.26201
[16] Cleave, J., Cauchy, convergence and continuity, Brit. J. Phil. Sci., 22, 27-37 (1971) · Zbl 0242.01011
[17] Cleave, J., The concept of ‘variable’ in nineteenth century analysis, Brit. J. Phil. Sci., 30, 266-278 (1979) · Zbl 0436.01007
[18] Cutland, N., Loeb Measures in Practice: Recent Advances, (Lecture Notes in Mathematics, 1751 (2000), Springer) · Zbl 0963.28015
[19] Cutland, N. J.; Kessler, C.; Kopp, E.; Ross, D., On Cauchy’s notion of infinitesimal, Brit. J. Phil. Sci., 39, 375-378 (1988) · Zbl 0661.26010
[20] Davis, M., Applied Nonstandard Analysis (1977), John Wiley & Sons · Zbl 0359.02060
[21] Di Nasso, M., On the foundations of nonstandard mathematics, Math. Japonica, 50, 131-160 (1999) · Zbl 0937.03075
[22] Di Nasso, M., An axiomatic presentation of the nonstandard methods in mathematics, J. Symb. Logic, 67, 315-325 (2002) · Zbl 1005.03053
[23] Di Nasso, M., Nonstandard analysis by means of ideal values of sequences, (Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum, Synthese Library, 306 (2001), Kluwer Academic Publishers), 63-73 · Zbl 1010.03057
[24] M. Di Nasso, Elementary embeddings of the universe in a nonwellfounded context7; M. Di Nasso, Elementary embeddings of the universe in a nonwellfounded context7
[25] Felgner, U., Comparison of the axioms of local and universal choice, Fund. Math., 71, 43-62 (1971) · Zbl 0255.02065
[26] Fisher, G., Cauchy and the infinitesimally small, Historia Math., 5, 313-338 (1978)
[27] Fisher, G., Cauchy’s variables and orders of the infinitesimally small, Brit. J. Phil. Sci., 30, 361-365 (1979)
[28] Goldblatt, R., Lectures on the Hyperreals — An Introduction to Nonstandard Analysis, (Graduate Texts in Mathematics, 188 (1998), Springer) · Zbl 0911.03032
[29] Hatcher, W. S., Calculus is algebra, Am. Math. Monthly, 98, 362-370 (1982) · Zbl 0521.03052
[30] Henle, J. M., Non-nonstandard analysis: real infinitesimals, Math. Intelligencer, 21, 67-73 (1999) · Zbl 0932.26014
[31] Henson, C. W., A gentle introduction to nonstandard extensions, (NATO ASI Series C, 493 (1997), Kluwer Academic Publishers), 1-49 · Zbl 0910.03040
[32] Hodges, W., Model Theory (1993), Cambridge University Press
[33] Jech, T., Set Theory (1978), Academic Press · Zbl 0419.03028
[34] Jin, R., Applications of nonstandard analysis in additive number theory, Bull. Symb. Logic, 6, 331-341 (2000) · Zbl 1071.11502
[35] Keisler, H. J., Foundations of Infinitesimal Calculus (1976), Prindle, Weber and Schmidt · Zbl 0333.26001
[36] Keisler, H. J., Elementary Calculus (1976), Prindle, Weber and Schmidt · Zbl 0325.26001
[37] Kunen, K., Set Theory. An Introduction to Independence Proofs (1980), North-Holland · Zbl 0443.03021
[38] Lakatos, I., Cauchy and the continuum: the significance of non-standard analysis for the history and philosophy of mathematics, (Worrall, J.; Curries, G., Mathematics, Science and Epistemology. Mathematics, Science and Epistemology, Philosophical Papers, vol. 2 (1978), Cambridge University Press), 43-60
[39] Laugwitz, D., The Theory of Infinitesimals. An Introduction to Nonstandard Analysis (1980), Accademia Nazionale dei Lincei
[40] Luxemburg, W. A.J., Non-standard Analysis, Lecture Notes (1962), California Institute of Technology: California Institute of Technology Roma
[41] Molchanov, V. A., The use of double nonstandard enlargements in topology, Siberian Math. J., 30, 397-402 (1989), [Translated from Sibirskii Matem. Z., 30 (1989), 64-71.] · Zbl 0718.54051
[42] Nelson, E., Internal set theory. A new approach to nonstandard analysis, Bull. Amer. Math. Soc., 83, 1165-1198 (1977) · Zbl 0373.02040
[43] Palmgren, E., Developments in constructive nonstandard analysis, Bull. Symb. Logic, 4, 223-271 (1998) · Zbl 0920.03063
[44] Robinson, A., Non-standard analysis, (Proc. Roy. Acad. Amsterdam, 64 (1961)), 432-440, (= Indag. Math., 23) · Zbl 0102.00708
[45] Robinson, A., Non-standard Analysis (1966), North-Holland: North-Holland Pasadena · Zbl 0151.00803
[46] Robinson, A.; Zakon, E., A set-theoretical characterization of enlargements, (Luxemburg, W. A.J., Applications of Model Theory to Algebra, Analysis and Probability (1969), Holt, Rinehart and Winston), 109-122 · Zbl 0193.30301
[47] Rudin, W., Homogeneity problems in the theory of Čech compactifications, Duke Math. J., 23, 409-419 (1956) · Zbl 0073.39602
[48] Schmieden, C.; Laugwitz, D., Eine erweiterung der infinitesimalrechnung, Math. Zeitschr., 69, 1-39 (1958) · Zbl 0082.04203
[49] (Schuster, P.; Berger, U.; Horst, O., Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum, Synthese Library, 306 (2001), Kluwer Academic Publishers) · Zbl 0982.00037
[50] Shelah, S., Proper Forcing, (Lecture Notes in Mathematics, 940 (1982), North-Holland) · Zbl 0495.03035
[51] Stroyan, K. D.; Luxemburg, W. A.J., Introduction to the Theory of Infinitesimals (1976), Academic Press · Zbl 0336.26002
[52] Stroyan, K. D.; Bayod, J. M., Foundations of Infinitesimal Stochastic Analysis (1986), North-Holland · Zbl 0624.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.