Christensen, Katie; Kulosman, Hamid Polarization of neural codes. (English) Zbl 1443.13007 Turk. J. Math. 44, No. 1, 1-18 (2020). MSC: 13B25 13A15 13F20 13P25 92B20 94B60 PDF BibTeX XML Cite \textit{K. Christensen} and \textit{H. Kulosman}, Turk. J. Math. 44, No. 1, 1--18 (2020; Zbl 1443.13007) Full Text: arXiv Link OpenURL
Christensen, Katie; Kulosman, Hamid Some remarks about trunks and morphisms of neural codes. (English) Zbl 1441.13021 Math. Appl., Brno 9, No. 1, 3-16 (2020). MSC: 13B10 13B25 13P25 92B05 94B60 PDF BibTeX XML Cite \textit{K. Christensen} and \textit{H. Kulosman}, Math. Appl., Brno 9, No. 1, 3--16 (2020; Zbl 1441.13021) Full Text: DOI arXiv OpenURL
Gipson, Ryan; Kulosman, Hamid For which Puiseux monoids are their monoid rings over fields AP? (English) Zbl 1439.13048 Int. Electron. J. Algebra 27, 43-60 (2020). Reviewer: Pedro A. García Sánchez (Granada) MSC: 13F15 20M25 13A05 20M13 20M14 PDF BibTeX XML Cite \textit{R. Gipson} and \textit{H. Kulosman}, Int. Electron. J. Algebra 27, 43--60 (2020; Zbl 1439.13048) Full Text: Link OpenURL
Kulosman, Hamid The number of addends in the decomposition of an element of a numerical monoid into atoms. (English) Zbl 1499.20159 JP J. Algebra Number Theory Appl. 44, No. 1, 63-80 (2019). MSC: 20M14 20M13 20M10 PDF BibTeX XML Cite \textit{H. Kulosman}, JP J. Algebra Number Theory Appl. 44, No. 1, 63--80 (2019; Zbl 1499.20159) Full Text: DOI OpenURL
Christensen, Katie; Gipson, Ryan; Kulosman, Hamid Irreducibility of certain binomials in semigroup rings for nonnegative rational monoids. (English) Zbl 1401.13057 Int. Electron. J. Algebra 24, 50-61 (2018). Reviewer: Pedro A. García Sánchez (Granada) MSC: 13F15 13A05 12E05 20M14 PDF BibTeX XML Cite \textit{K. Christensen} et al., Int. Electron. J. Algebra 24, 50--61 (2018; Zbl 1401.13057) Full Text: DOI OpenURL
Gipson, Ryan; Kulosman, Hamid Atomic and AP semigroup rings \(F[X;M]\), where \(M\) is a submonoid of the additive monoid of nonnegative rational numbers. (English) Zbl 1453.13060 Int. Electron. J. Algebra 22, 133-146 (2017). MSC: 13F15 13A05 PDF BibTeX XML Cite \textit{R. Gipson} and \textit{H. Kulosman}, Int. Electron. J. Algebra 22, 133--146 (2017; Zbl 1453.13060) Full Text: DOI OpenURL
Kulosman, Hamid; Miller, Alica Countable lower semilattices whose set of join-reducible elements is well-ordered. (English) Zbl 1318.20054 Adv. Appl. Discrete Math. 15, No. 1, 75-90 (2015). MSC: 20M14 06A12 20M05 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{A. Miller}, Adv. Appl. Discrete Math. 15, No. 1, 75--90 (2015; Zbl 1318.20054) Full Text: DOI Link OpenURL
Kulosman, Hamid; Miller, Alica A note about finite lower semilattices whose set of join-reducible elements is totally ordered. (English) Zbl 1312.20054 Far East J. Math. Sci. (FJMS) 87, No. 2, 195-205 (2014). MSC: 20M14 06A12 20M05 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{A. Miller}, Far East J. Math. Sci. (FJMS) 87, No. 2, 195--205 (2014; Zbl 1312.20054) Full Text: Link OpenURL
Kulosman, Hamid About an example where the \(I\)-adic completion of a module is not \(I\)-adically complete. (English) Zbl 1295.13014 JP J. Algebra Number Theory Appl. 31, No. 1, 15-30 (2013). Reviewer: Moshe Roitman (Haifa) MSC: 13B35 13F25 PDF BibTeX XML Cite \textit{H. Kulosman}, JP J. Algebra Number Theory Appl. 31, No. 1, 15--30 (2013; Zbl 1295.13014) Full Text: Link OpenURL
Kulosman, Hamid; Miller, Alica A generalization of semiflows on monomials. (English) Zbl 1249.37001 Math. Bohem. 137, No. 1, 99-111 (2012). MSC: 37B05 13A15 54H20 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{A. Miller}, Math. Bohem. 137, No. 1, 99--111 (2012; Zbl 1249.37001) Full Text: EuDML Link OpenURL
Kulosman, Hamid Comparison of \(c\) and \(d\)-sequences. (English) Zbl 1248.13009 J. Algebra Appl. 11, No. 1, Article ID 1250010, 10 p. (2012). Reviewer: Mahdi Majidi-Zolbanin (New York) MSC: 13A30 13A15 13G05 PDF BibTeX XML Cite \textit{H. Kulosman}, J. Algebra Appl. 11, No. 1, Article ID 1250010, 10 p. (2012; Zbl 1248.13009) Full Text: DOI OpenURL
Kulosman, Hamid; Miller, Alica Zero-divisor graphs of some special semigroups. (English) Zbl 1260.20083 Far East J. Math. Sci. (FJMS) 57, No. 1, 63-90 (2011). Reviewer: Wu Tongsuo (Shanghai) MSC: 20M14 05C25 20M05 05C75 06A12 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{A. Miller}, Far East J. Math. Sci. (FJMS) 57, No. 1, 63--90 (2011; Zbl 1260.20083) Full Text: Link OpenURL
Kulosman, Hamid; Miller, Alica Adjoining idempotents to semigroups. (English) Zbl 1246.20048 Int. J. Algebra 5, No. 17-20, 897-908 (2011). MSC: 20M05 20M14 20M12 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{A. Miller}, Int. J. Algebra 5, No. 17--20, 897--908 (2011; Zbl 1246.20048) Full Text: Link OpenURL
Kulosman, Hamid; Wang, Minghu A generalization of Alon’s combinatorial nullstellensatz. (English) Zbl 1232.13013 JP J. Algebra Number Theory Appl. 20, No. 1, 61-75 (2011). Reviewer: Mateusz Michalek (Kraków) MSC: 13G05 13B25 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{M. Wang}, JP J. Algebra Number Theory Appl. 20, No. 1, 61--75 (2011; Zbl 1232.13013) Full Text: Link OpenURL
Kulosman, Hamid; Britt, Stephanie Two-element Gröbner bases over Noetherian commutative rings. (English) Zbl 1254.13030 J. Algebra Number Theory, Adv. Appl. 4, No. 1, 41-48 (2010). MSC: 13P10 13B25 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{S. Britt}, J. Algebra Number Theory, Adv. Appl. 4, No. 1, 41--48 (2010; Zbl 1254.13030) Full Text: Link OpenURL
Dougherty, Steven T.; Kim, Jon-Lark; Kulosman, Hamid; Liu, Hongwei Self-dual codes over commutative Frobenius rings. (English) Zbl 1213.94193 Finite Fields Appl. 16, No. 1, 14-26 (2010). Reviewer: Bal Kishan Dass (Delhi) MSC: 94B25 PDF BibTeX XML Cite \textit{S. T. Dougherty} et al., Finite Fields Appl. 16, No. 1, 14--26 (2010; Zbl 1213.94193) Full Text: DOI OpenURL
Kulosman, H. Sequences between \(d\)-sequences and sequences of linear type. (English) Zbl 1212.13001 Commentat. Math. Univ. Carol. 50, No. 1, 1-9 (2009). MSC: 13A30 13B25 13A15 13C13 PDF BibTeX XML Cite \textit{H. Kulosman}, Commentat. Math. Univ. Carol. 50, No. 1, 1--9 (2009; Zbl 1212.13001) Full Text: EuDML EMIS OpenURL
Dougherty, Steven T.; Kim, Jon-Lark; Kulosman, Hamid MDS codes over finite principal ideal rings. (English) Zbl 1178.94221 Des. Codes Cryptography 50, No. 1, 77-92 (2009). MSC: 94B05 PDF BibTeX XML Cite \textit{S. T. Dougherty} et al., Des. Codes Cryptography 50, No. 1, 77--92 (2009; Zbl 1178.94221) Full Text: DOI OpenURL
Kulosman, H. Two-generated ideals of linear type. (English) Zbl 1175.13003 Acta Math. Univ. Comen., New Ser. 78, No. 1, 97-102 (2009). Reviewer: Štefan Solčan (Bratislava) MSC: 13A30 13B22 13B25 PDF BibTeX XML Cite \textit{H. Kulosman}, Acta Math. Univ. Comen., New Ser. 78, No. 1, 97--102 (2009; Zbl 1175.13003) Full Text: EuDML OpenURL
Kulosman, Hamid Monomial sequences of linear type. (English) Zbl 1182.13005 Ill. J. Math. 52, No. 4, 1213-1221 (2008). MSC: 13A30 13B25 13A15 13C13 PDF BibTeX XML Cite \textit{H. Kulosman}, Ill. J. Math. 52, No. 4, 1213--1221 (2008; Zbl 1182.13005) Full Text: Euclid OpenURL
Kim, Jon-Lark; Kulosman, Hamid; Seif, Steve An elementary path to Galois and strongly pure chain rings. (English) Zbl 1155.13312 Panam. Math. J. 18, No. 4, 39-44 (2008). MSC: 13M05 94B05 PDF BibTeX XML Cite \textit{J.-L. Kim} et al., Panam. Math. J. 18, No. 4, 39--44 (2008; Zbl 1155.13312) OpenURL
Kulosman, Hamid; Miller, Harry I. Additive functions with big graphs. (English) Zbl 0813.39005 Pr. Nauk. Uniw. Śląsk. Katowicach 1304, Ann. Math. Silesianae 6, 61-64 (1992). Reviewer: A.Smajdor (Katowice) MSC: 39B22 26A30 PDF BibTeX XML Cite \textit{H. Kulosman} and \textit{H. I. Miller}, Pr. Nauk. Uniw. Śląsk. Katowicach, Ann. Math. Silesianae 1304(6), 61--64 (1992; Zbl 0813.39005) OpenURL
Kulosman, Hamid The number of equivalence classes of the relation \(\text{lcm}(x,n) = \text{lcm}(y,n)\) on the set \(\{1,2,\ldots,n\}\). (English) Zbl 0746.11008 Rad. Mat. 7, No. 1, 143-150 (1991). Reviewer: Sunder Lal (Chandigarh) MSC: 11A51 11A05 PDF BibTeX XML Cite \textit{H. Kulosman}, Rad. Mat. 7, No. 1, 143--150 (1991; Zbl 0746.11008) OpenURL
Kulosman, Hamid A proof of an inequality due to J. Barkes. (Serbo-Croatian) Zbl 0518.26007 Mat. Vesn. 6(19)(34), 397-400 (1982). MSC: 26D15 PDF BibTeX XML Cite \textit{H. Kulosman}, Mat. Vesn. 6(19)(34), 397--400 (1982; Zbl 0518.26007) OpenURL