×

Approximation of skewed interfaces with tensor-based model reduction procedures: application to the reduced basis hierarchical model reduction approach. (English) Zbl 1349.74007

Summary: In this article we introduce a procedure, which allows to recover the potentially very good approximation properties of tensor-based model reduction procedures for the solution of partial differential equations in the presence of interfaces or strong gradients in the solution which are skewed with respect to the coordinate axes. The two key ideas are the location of the interface either by solving a lower-dimensional partial differential equation or by using data functions and the subsequent removal of the interface of the solution by choosing the determined interface as the lifting function of the Dirichlet boundary conditions. We demonstrate in numerical experiments for linear elliptic equations and the reduced basis-hierarchical model reduction approach that the proposed procedure locates the interface well and yields a significantly improved convergence behavior even in the case when we only consider an approximation of the interface.

MSC:

74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids

Software:

rbMIT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. Non-Newton. Fluid Mech., 139, 153-176 (2006) · Zbl 1195.76337
[2] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, Ser. I, 339, 667-672 (2004) · Zbl 1061.65118
[3] Bear, J., Dynamics of Fluids in Porous Media (1988), Dover Publications: Dover Publications New York · Zbl 1191.76002
[4] Berninger, H.; Ohlberger, M.; Sander, O.; Smetana, K., Unsaturated subsurface flow with surface water and nonlinear in-and outflow conditions, Math. Models Methods Appl. Sci., 24, 901-936 (2014) · Zbl 1288.35023
[5] Cancès, E.; Ehrlacher, V.; Lelièvre, T., Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Math. Models Methods Appl. Sci., 21, 2433-2467 (2011) · Zbl 1259.65098
[6] Chinesta, F.; Cueto, E., PGD-Based Modeling of Materials, Structures and Processes (2014), Springer
[7] Chinesta, F.; Keunings, R.; Leygue, A., The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer (2013), Springer
[8] Dagan, G., Second-order theory of shallow free-surface flow in porous media, Q. J. Mech. Appl. Math., 20, 517-526 (1967) · Zbl 0166.23201
[9] Dahmen, W.; Huang, C.; Schwab, C.; Welper, G., Adaptive Petrov-Galerkin methods for first order transport equations, SIAM J. Numer. Anal., 50, 5, 2420-2445 (2012) · Zbl 1260.65091
[10] DeVore, R.; Petrova, G.; Wojtaszczyk, P., Greedy algorithms for reduced bases in Banach spaces, Constr. Approx., 1-12 (2013)
[11] Dupuit, J., Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Découverts et à Travers les Terrains Permeables (1863), Dunod: Dunod Paris
[12] Ern, A.; Perotto, S.; Veneziani, A., Hierarchical model reduction for advection-diffusion-reaction problems, (Kunisch, K.; Of, G.; Steinbach, O., Numerical Mathematics and Advanced Applications (2008), Springer: Springer Berlin, Heidelberg), 703-710 · Zbl 1157.65487
[13] Gerbeau, J.-F.; Lombardi, D., Approximated Lax pairs for the reduced order integration of nonlinear evolution equations, J. Comput. Phys., 265, 246-269 (2014) · Zbl 1349.65548
[14] Haasdonk, B.; Dihlmann, M.; Ohlberger, M., A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst., 17, 423-442 (2011) · Zbl 1302.65221
[15] Haasdonk, B.; Ohlberger, M., Adaptive basis enrichment for the reduced basis method applied to finite volume schemes, (Finite Volumes for Complex Applications V (2008), ISTE: ISTE London), 471-478 · Zbl 1422.65207
[16] Henning, P.; Peterseim, D., Oversampling for the multiscale finite element method, Multiscale Model. Simul., 11, 1149-1175 (2013) · Zbl 1297.65155
[17] Kahlbacher, M.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems, Discuss. Math., Differ. Incl. Control Optim., 27, 95-117 (2007) · Zbl 1156.35020
[18] Le Maître, O. P.; Mathelin, L., Equation-free model reduction for complex dynamical systems, Int. J. Numer. Methods Fluids, 63, 163-184 (2010) · Zbl 1423.76344
[19] Le Bris, C.; Lelièvre, T.; Maday, Y., Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations, Constr. Approx., 30, 621-651 (2009) · Zbl 1191.65156
[20] Nouy, A., A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 196, 4521-4537 (2007) · Zbl 1173.80311
[21] Ohlberger, M.; Rave, S., Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, C. R. Math. Acad. Sci. Paris, 351, 901-906 (2013) · Zbl 1281.65117
[22] Ohlberger, M.; Smetana, K., A new hierarchical model reduction-reduced basis technique for advection-diffusion-reaction problems, (Aubry, D.; Díez, P.; Tie, B.; Parés, N., Proceedings of the V International Conference on Adaptive Modeling and Simulation (ADMOS 2011) held in Paris, France, 6-8 June 2011 (2011), CIMNE: CIMNE Barcelona), 343-354
[23] Ohlberger, M.; Smetana, K., A dimensional reduction approach based on the application of reduced basis methods in the framework of hierarchical model reduction, SIAM J. Sci. Comput., 36, A714-A736 (2014)
[25] Perotto, S., Hierarchical model (hi-mod) reduction in non-rectilinear domains, (Domain Decomposition Methods in Science and Engineering XXI (2014), Springer International Publishing), 477-485 · Zbl 1382.65418
[26] Perotto, S.; Ern, A.; Veneziani, A., Hierarchical local model reduction for elliptic problems: a domain decomposition approach, Multiscale Model. Simul., 8, 1102-1127 (2010) · Zbl 1206.65251
[27] Rozza, G.; Huynh, D.; Patera, A., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics, Arch. Comput. Methods Eng., 15, 229-275 (2008) · Zbl 1304.65251
[28] Smetana, K., A dimensional reduction approach based on the application of reduced basis methods in the context of hierarchical model reduction (2013), University of Münster, PhD thesis · Zbl 1273.00039
[29] Smetana, K.; Ohlberger, M., Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques, ESAIM Math. Model. Numer. Anal. (2016), accepted for publication
[30] Taddei, T.; Perotto, S.; Quarteroni, A., Reduced basis techniques for nonlinear conservation laws, ESAIM Math. Model. Numer. Anal., 49, 3, 787-814 (2015) · Zbl 1316.65079
[31] Vogelius, M.; Babuška, I., On a dimensional reduction method. I. The optimal selection of basis functions, Math. Comput., 37, 31-46 (1981) · Zbl 0495.65049
[32] Vogelius, M.; Babuška, I., On a dimensional reduction method. II. Some approximation-theoretic results, Math. Comput., 37, 47-68 (1981) · Zbl 0495.65050
[33] Vogelius, M.; Babuška, I., On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach, Math. Comput., 37, 361-384 (1981) · Zbl 0523.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.