×

zbMATH — the first resource for mathematics

Successive approximations by the Rayleigh-Ritz variation method. (English) Zbl 0007.11803

MSC:
49-XX Calculus of variations and optimal control; optimization
65Lxx Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Kryloff, Mem. des Sci. Math. fasc. XLIX (1931)
[2] K. Hohenemser, in: Die Methoden zur Angenaherten Losung von Eigenwertproblemen in der Elastokinetic (1932) · doi:10.1007/978-3-642-94169-6
[3] Kemble, Rev. Mod. Phys. 1 pp 206– (1929) · JFM 57.1231.02 · doi:10.1103/RevModPhys.1.157
[4] Bateman, in: Partial Differential Equations of Mathematical Physics (1932) · JFM 58.0490.07
[5] E. L. Ince, in: Ordinary Differential Equations (1927) · JFM 53.0399.07
[6] H. Weyl, Math. Ann. 68 pp 220– (1910) · JFM 41.0343.01 · doi:10.1007/BF01474161
[7] Courant, in: Mathematische Physik I (1931) · Zbl 0849.01022
[8] Whittaker, in: Modern Analysis (1920)
[9] Hermite, Comptes Rendus 41
[10] Hermite, in: Ouvres
[11] Salmon, in: Higher Algebra
[12] Burnside, in: Theory of Equations · JFM 01.0191.01
[13] C. W. Borchardt, J. de Math. 12 pp 50– (1847)
[14] Bateman, Bull. Am. Math. Soc. 18 pp 179– (1912) · JFM 43.0426.02 · doi:10.1090/S0002-9904-1912-02184-5
[15] J. K. L. MacDonald, Proc. Roy. Soc. (London) A138 pp 187– (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.