McShane, E. J. The Du Bois-Reymond relation in the calculus of variations. (English) Zbl 0009.17001 Math. Ann. 109, 746-755 (1934). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents Keywords:calculus of variations PDF BibTeX XML Cite \textit{E. J. McShane}, Math. Ann. 109, 746--755 (1934; Zbl 0009.17001) Full Text: DOI EuDML References: [1] L. Tonelli, Fondamenti di Calcolo delle Variazioni, Vol. II, p. 321. [2] Existence Theorems for Ordinary Problems of the Calculus of Variations, to appear in Annali della R. Scuola Norm. Sup. di Pisa. · Zbl 0010.06801 [3] Carathéodory, Vorlesungen über reelle Funktionen, p. 377. [4] l. c. 3) Carathéodory, Vorlesungen über reelle Funktionen, p. 584. [5] l. c. 2) Existence Theorems for Ordinary Problems of the Calculus of Variations, to appear in Annali della R. Scuola Norm. Sup. di Pisa. · Zbl 0010.06801 [6] The usefulness of this boundedness ofz? is shown in my note, ?Über die Unlösbarkeit eines einfachen Problems der Variationsrechnung?. Göttinger Nachrichten 1933, p. 359. [7] Carathéodory, l. c. 3) Carathéodory, Vorlesungen über reelle Funktionen, p. 664. [8] l. c. 2) Existence Theorems for Ordinary Problems of the Calculus of Variations, to appear in Annali della R. Scuola Norm. Sup. di Pisa. · Zbl 0010.06801 [9] l. c. 4) Carathéodory, Vorlesungen über reelle Funktionen, p. 377. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.