×

zbMATH — the first resource for mathematics

An inequality of the Hölder type, connected with Stieltjes integration. (English) Zbl 0016.10404

Keywords:
Analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Besicovitch, A. S.: Sur la nature des fonctions à carré sommable et des ensembles mesurables, Fundamenta Math. 4 (1923) 172–195. · JFM 49.0182.01
[2] Bohr, H.: The arithmetic and geometric means, Journ. London Math. Soc. 10 (1935) 114. · Zbl 0011.34204 · doi:10.1112/jlms/s1-10.1.114
[3] Hardy, G. H.: Weierstrass’s non differentiable function, Trans. Amer. Math. Soc. 17 (1916), 301–325. · JFM 46.0401.03
[4] Hardy, G. H. andLittlewood, J. E.: A convergence criterion for Fourier series, Math. Zeitschrift 28 (1928) 612–634. · JFM 54.0301.03 · doi:10.1007/BF01181186
[5] Hardy, G. H., Littlewood, J. E., andPólya, G.: Inequalities, Cambridge 1934.
[6] Helly, E.: Über lineare Funktionaloperationen, Wiener Sitzungsberichte 121 (1912), p. 265. · JFM 43.0418.02
[7] Kogbetliantz, E.: Les séries trigonométriques et les séries sphériques, Annales Sc. de l’Ecole Normale (3) 40 (1923) 259–323. · JFM 49.0715.02
[8] Kuttner, B.: A theorem on trigonometric series, Journ. London Math. Soc. 10 (1935) 131–135. · Zbl 0011.25501 · doi:10.1112/jlms/s1-10.1.131
[9] Pollard, S.: The Stieltjes integral and its generalisations, Quart. Journ. of Math. 49 (1923) 73–138. · JFM 48.1199.01
[10] Pollard, S. andYoung, R. C.: On the integral \(\int\limits_a^b {\frac{{dF(t)}}{{x - t}},} \) , Proc. London Math. Soc. (2) 28 (1928) 293–300. · JFM 54.0328.01 · doi:10.1112/plms/s2-28.1.145
[11] Wiener, N.: The Quadratic Variation of a function and its Fourier coefficients, Journ. Mass. Inst. of Technology 3 (1924) 73–94. · JFM 50.0203.01
[12] Zygmund, A.: Trigonometrical series, Warsaw (1935). · Zbl 0011.01703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.