×

zbMATH — the first resource for mathematics

On orthogonal polynomials satisfying \(q\)-difference equations. (Über Orthogonalpolynome, die \(q\)-Differenzengleichungen genügen.) (German) Zbl 0031.39001

MSC:
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
39A13 Difference equations, scaling (\(q\)-differences)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, Bull. Amer. math. Soc. 37 pp 361– (1931)
[2] Generalized hypergeometric series. London 1935. · Zbl 0011.02303
[3] Bateman, T??hoku math. J. 37 pp 23– (1933)
[4] Bateman, Proc. nat. Acad. Sci. USA. 20 pp 63– (1934)
[5] Erdélyi, Math. Z. 42 pp 126– (1936)
[6] Gottlieb, Amer. J. Math. 60 pp 453– (1938)
[7] Hahn, Schr. math. Sem. Inst. angew. Math. Univ. Berlin 1 pp 212– (1933)
[8] Hahn, Math. Z. 39 pp 634– (1935)
[9] Hahn, Deutsche Math. 5 pp 273– (1939)
[10] Hamburger, I.; II.; III. Math. Ann., Berlin 81 pp 235– (1920) · JFM 47.0427.04 · doi:10.1007/BF01564869
[11] Handbuch der Theorie der Kugelfunktionen. Bd. 1. Berlin 1878, S. 97 ff.
[12] Hildebrandt, Ann. math. Statist., Ann Arbor 2 pp 379– (1931)
[13] Hoover, Amer. J. Math. 48 pp 125– (1926)
[14] Jackson, Quart. J. Math. 41 pp 193– (1910)
[15] Jackson, Messenger Math. 47 pp 57– (1917)
[16] Koulik, J. Inst. math. Acad. Sci. Ukraine 38 pp 89– (1937)
[17] Krawtchouk, C. R. Acad. Sci., Paris 189 pp 620– (1929)
[18] Meixner, J. London math. Soc. 9 pp 6– (1934)
[19] Shohat, Duke math. J. 5 pp 401– (1939)
[20] Ein Beitrag zur Theorie der Thetafunktionen. S.-B. Preuß. Akad. Wiss. Berlin 1926, 242–252.
[21] Thomae, J. reine angew. Math. 70 pp 258– (1869) · JFM 02.0122.04 · doi:10.1515/crll.1869.70.258
[22] Thomae, Z. Math. Phys. 16 pp 146– (1871)
[23] Truksa, Aktuárské Vêdy 2 pp 65– (1931)
[24] Wigert, Ark. Mat. Astron. Fys. 27 pp 7– (1923)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.