×

zbMATH — the first resource for mathematics

On the Walsh functions. (English) Zbl 0036.03604

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Kac, Sur les fonctions \( {2^n}t - [{2^n}t] - 1/2\), J. London Math. Soc. vol. 13 (1938) pp. 131-134. · JFM 64.0214.02
[2] M. Kac, On the distribution of values of sums of the type \sum \?(2^\?\?), Ann. of Math. (2) 47 (1946), 33 – 49. · Zbl 0063.03091 · doi:10.2307/1969033 · doi.org
[3] S. Kaczmarz, Über ein Orthogonalsystem, Comptes Rendus du premier congrès des mathématiciens des pays slaves, Warsaw, 1929, pp. 189-192.
[4] S. Kaczmarz and H. Steinhaus, Le systeme orthogonal de M. Rademacher, Studia Math. vol. 2 (1930) pp. 231-247. · JFM 56.0950.06
[5] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. vol. 34 (1932) pp. 241-279. · Zbl 0005.24901
[6] Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112 – 138 (German). · JFM 48.0485.05 · doi:10.1007/BF01458040 · doi.org
[7] J. L. Walsh, A Closed Set of Normal Orthogonal Functions, Amer. J. Math. 45 (1923), no. 1, 5 – 24. · JFM 49.0293.03 · doi:10.2307/2387224 · doi.org
[8] A. Zygmund, Trigonometrical series, Warsaw, 1935. · Zbl 0011.01703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.