×

On some applications of the universal envelopping algebra of a semisimple Lie algebra. (English) Zbl 0042.12701


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Garrett Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. (2) 38 (1937), no. 2, 526 – 532. · JFM 63.0090.01
[2] E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41 (1913), 53 – 96 (French). · JFM 44.0170.02
[3] Claude Chevalley, Sur la classification des algèbres de Lie simples et de leurs représentations, C. R. Acad. Sci. Paris 227 (1948), 1136 – 1138 (French). · Zbl 0034.17001
[4] Claude Chevalley, An algebraic proof of a property of Lie groups, Amer. J. Math. 63 (1941), 785 – 793. · Zbl 0026.06001
[5] Claude Chevalley, Algebraic Lie algebras, Ann. of Math. (2) 48 (1947), 91 – 100. · Zbl 0032.25202
[6] -, Theory of Lie groups, Princeton University Press, 1946.
[7] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, On the connection between the representations of a complex semi-simple Lie group and those of its maximal compact subgroups, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 225 – 228 (Russian).
[8] Lars Gårding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 331 – 332. · Zbl 0031.05703
[9] Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900 – 915. · Zbl 0035.01901
[10] Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507 – 558. · Zbl 0034.01803
[11] F. I. Mautner, Ann. of Math. vol. 52 (1951) pp. 528-556. · Zbl 0039.02201
[12] H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395.
[13] -, The classical groups, Princeton University Press, 1939.
[14] E. Witt, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.