×

A theorem about infinite-valued sentential logic. (English) Zbl 0043.00901


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] McNaughton R. A theroem about infinite-valued sentential logic. The J Symb Logic, 1951, 16: 1-13 · Zbl 0043.00901
[2] Rosser J B, Turquette A R. Axiom schemes for M-valued propositional calculi. The J Symb Logic, 1945, 10: 61-82 · Zbl 0063.06587
[3] Post E L. Introduction to a general theory of elementary propositions. Am J Math, 1921, 43: 163-185 · JFM 48.1122.01
[4] Chang C C. A new proof of the completeness of the Lukasiewicz axioms. Trans Am Math Society, 1959, 93: 74-90 · Zbl 0093.01104
[5] Kleene S C. Introduction to Metamathematics. Van Nostrand: Amsterdam and Princeton. 1952
[6] Novák, V. Which logic is the real fuzzy logic? Fuzzy Sets Syst, 2006, 157: 635-641 · Zbl 1100.03013
[7] Cintula P. From fuzzy logic to fuzzy mathematics. Ph.D. Thesis, Prague: Technical University, 2005 · Zbl 1086.06008
[8] Cintula P, Hájek P. Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst, 2010, 161: 311-346 · Zbl 1200.03020
[9] Esteva F, Godo L, Noguera C. First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Annals Pure Appl Logic, 2009, 161: 185-202 · Zbl 1222.03027
[10] Hájek P. Metamathematics of Fuzzy Logic, Trends in Logic. Vol. 4. Dordercht: Kluwer Academic Publishers, 1998 · Zbl 0937.03030
[11] Wang G J. A formal deductive system of fuzzy propositional calculus. Chinese Sci Bull, 1997, 42: 1041-1045
[12] Wang G J. Logic on a kind of algebras (I) (in Chinese). J Shaanxi Norm Univ (Nat Sci Ed), 1997, 25: 1-8
[13] Pei D W, Wang G J. The completeness and applications of the formal system L*. Sci China Ser F-Inf Sci, 2002, 45: 40-50 · Zbl 1182.03053
[14] Wang G J. On the logic foundation of fuzzy reasoning. Inf Sci, 1999, 117: 47-88 · Zbl 0939.03031
[15] Wang G J. Nonclassical Mathematical Logic and Approximate Reasoning (in Chinese). Beijing: Science Press, 2000
[16] Hui X J, Wang G J. Randomization of classical inference patterns and its application. Sci China Ser F-Inf Sci, 2007, 50: 867-877 · Zbl 1127.03017
[17] Wang G J, Zhou H J. Quantitative logic. Inf Sci, 2009, 179: 226-247 · Zbl 1167.03020
[18] Pavelka J. On fuzzy logic(I). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 45-52 · Zbl 0435.03020
[19] Pavelka J. On fuzzy logic(II). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 119-134 · Zbl 0446.03015
[20] Pavelka J. On fuzzy logic(III). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 447-464 · Zbl 0446.03016
[21] Novák V. First-order fuzzy logic. Studia Logica, 1982, 46: 87-109 · Zbl 0632.03021
[22] Novák V. On fuzzy type theory. Fuzzy Sets Syst, 2005, 149: 235-273 · Zbl 1068.03019
[23] Novák V. Fuzzy logic with countable evaluated syntax revisited. Fuzzy Sets Syst, 2007, 158: 929-936 · Zbl 1197.03025
[24] Novák V. A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst, 2008, 159: 2939-2969 · Zbl 1176.03012
[25] Xu Y, Qin K Y, Liu J, et al. L-valued propositional logic-Lvpl. Inf Sci, 1999, 114: 205-235 · Zbl 0936.03023
[26] Xu Y, Liu J, Song Z M, et al. On semantics of L-valued first-order logic-Lvfl. Int J Gen Syst, 2000, 29: 53-79 · Zbl 0953.03028
[27] Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic-An Alternative Approach to Treat Fuzziness and Incomparability. Berlin, Heidelberg, New York: Springer-Verlag Press, 2003 · Zbl 1048.03003
[28] Ying M S. The fundamental theorem of ultraproduct in Pavelkas logic. Z Math Logik Grundl Math, 1992, 38: 197-201 · Zbl 0798.03021
[29] Turunen E. Mathematics Behind Fuzzy Logic. Berlin: Springer, 1999 · Zbl 0940.03029
[30] Turunen E, Öztürk M, Tsoukiás A. Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets Syst, 2010, 161: 1926-1940 · Zbl 1205.03038
[31] Wang G J. Theory of Σ-\((α\)-tautologies) in revised Kleene systems. Sci China Ser E, 1998, 41: 188-195
[32] Wang D G, Gu Y D, Li H X. Generalized tautology in fuzzy modal propositional logic (in Chinese). Chinese J Electr, 2007, 35: 261-264
[33] Wang G J,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.