×

zbMATH — the first resource for mathematics

Completely reducible Lie algebras of linear transformations. (English) Zbl 0043.26803

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. (2) 48 (1947), 546 – 567. · Zbl 0029.01003
[2] E. Cartan, Thèse, Paris, 1894. · JFM 45.0254.04
[3] Claude Chevalley, A new kind of relationship between matrices, Amer. J. Math. 65 (1943), 521 – 531. · Zbl 0060.03602
[4] Claude Chevalley and Hsio-Fu Tuan, On algebraic Lie algebras, Proc. Nat. Acad. Sci. U. S. A. 31 (1945), 195 – 196. · Zbl 0060.08102
[5] Morikuni Gotô, On algebraic Lie algebras, J. Math. Soc. Japan 1 (1948), 29 – 45. · Zbl 0038.02104
[6] Nathan Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. (2) 36 (1935), no. 4, 875 – 881. · Zbl 0012.33704
[7] Nathan Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149 – 170. · Zbl 0034.16903
[8] N. Jacobson, Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Ann. of Math. (2) 50 (1949), 866 – 874. · Zbl 0039.02802
[9] A. Malcev, On solvable Lie algebras, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 9 (1945), 329 – 356 (Russian, with English summary). · Zbl 0061.05303
[10] V. V. Morozov, On a nilpotent element in a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 83 – 86. · Zbl 0063.04103
[11] W. W. Morosov, On the centralizer of a semi-simple subalgebra of a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 259 – 261. · Zbl 0063.04104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.