×

zbMATH — the first resource for mathematics

Random Fourier transforms. (English) Zbl 0043.30601

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] André Blanc-Lapierre and Robert Fortet, Sur la structure des fonctions aléatoires strictement stationnaires à spectre totalement discontinu, C. R. Acad. Sci. Paris 222 (1946), 1155 – 1157 (French). · Zbl 0063.00435
[2] Salomon Bochner, Stochastic processes, Ann. of Math. (2) 48 (1947), 1014 – 1061. · Zbl 0029.36802 · doi:10.2307/1969392 · doi.org
[3] J. L. Doob, Stochastic processes depending on a continuous parameter, Trans. Amer. Math. Soc. 42 (1937), no. 1, 107 – 140. · Zbl 0017.02701
[4] W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), 373 – 402. · Zbl 0063.08417
[5] B. Jessen, The theory of integration in a space of an infinite number of dimensions, Acta Math. 63 (1934), no. 1, 249 – 323. · Zbl 0010.20004 · doi:10.1007/BF02547355 · doi.org
[6] J. Khintchine, Math. Zeit. vol. 18 (1923) pp. 109-116.
[7] A. Kolmogoroff, Über die Summen durch den Zufall bestimmter unabhängiger Größen, Math. Ann. 99 (1928), no. 1, 309 – 319 (German). · JFM 54.0543.05 · doi:10.1007/BF01459098 · doi.org
[8] J. Marcinkiewicz and A. Zygmund, Studia Mathematica vol. 7 (1938) pp. 104-120.
[9] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. · Zbl 0011.01601
[10] R. E. A. C. Paley and A. Zygmund, Proc. Cambridge Philos. Soc. vol. 26 (1930) pp. 337-357, 458-474; and vol. 28 (1932) pp. 190-205.
[11] A. Zygmund, Trigonometrical series, Warsaw, 1935. · Zbl 0011.01703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.