×

zbMATH — the first resource for mathematics

Identities in two-valued calculi. (English) Zbl 0044.00201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449 – 463. · Zbl 0040.01101
[2] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. vol. 31 (1935) pp. 433-454. · Zbl 0013.00105
[3] -, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, Rev. ed., New York, 1948.
[4] Leon Henkin, Fragments of the propositional calculus, J. Symbolic Logic 14 (1949), 42 – 48. · Zbl 0034.00703
[5] Roger C. Lyndon, The representation of relational algebras, Ann. of Math. (2) 51 (1950), 707 – 729. · Zbl 0037.29302
[6] A. Malcev, On the embedding of associative systems in groups, Mat. Sbornik N.S. vol. 8 (1940) pp. 251-263. · JFM 66.0097.04
[7] B. H. Neumann, Identical relations in groups. I, Math. Ann. 114 (1937), no. 1, 506 – 525. · Zbl 0016.35102
[8] Emil L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies, no. 5, Princeton University Press, Princeton, N. J., 1941. · Zbl 0063.06326
[9] J. B. Rosser and A. R. Turquette, Axiom schemes for \?-valued propositional calculi, J. Symbolic Logic 10 (1945), 61 – 82. · Zbl 0063.06587
[10] Wilhelm Specht, Gesetze in Ringen. I, Math. Z. 52 (1950), 557 – 589 (German). · Zbl 0032.38901
[11] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), no. 1, 37 – 111. · Zbl 0014.34002
[12] Alfred Tarski, A remark on functionally free algebras, Ann. of Math. (2) 47 (1946), 163 – 165. · Zbl 0060.06208
[13] M. Wajsberg, Beiträge zum Metaaussagenkalkül I, Monatsh. Math. Phys. 42 (1935), no. 1, 221 – 242 (German). · JFM 61.0972.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.