×

zbMATH — the first resource for mathematics

General representation theory of Jordan algebras. (English) Zbl 0044.02503

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. (2) 48 (1947), 546 – 567. · Zbl 0029.01003
[2] Garrett Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), no. 1, 61 – 101. · Zbl 0018.20502
[3] Garrett Birkhoff and Phillip M. Whitman, Representation of Jordan and Lie algebras, Trans. Amer. Math. Soc. 65 (1949), 116 – 136. · Zbl 0032.25102
[4] Samuel Eilenberg, Extensions of general algebras, Ann. Soc. Polon. Math. 21 (1948), 125 – 134. · Zbl 0031.34303
[5] Harish-Chandra, On the radical of a Lie algebra, Proc. Amer. Math. Soc. 1 (1950), 14 – 17. · Zbl 0036.29804
[6] G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677 – 694. · Zbl 0063.02028
[7] F. D. Jacobson and N. Jacobson, Classification and representation of semi-simple Jordan algebras, Trans. Amer. Math. Soc. 65 (1949), 141 – 169. · Zbl 0034.16902
[8] Nathan Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. (2) 36 (1935), no. 4, 875 – 881. · Zbl 0012.33704
[9] N. Jacobson, Structure theory of simple rings without finiteness assumptions, Trans. Amer. Math. Soc. 57 (1945), 228 – 245. · Zbl 0060.07401
[10] Nathan Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149 – 170. · Zbl 0034.16903
[11] N. Jacobson, Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Ann. of Math. (2) 50 (1949), 866 – 874. · Zbl 0039.02802
[12] A. Malcev, On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 42 – 45. · Zbl 0060.08004
[13] A. J. Penico, The Wedderburn principal theorem for Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 404 – 420. · Zbl 0043.03901
[14] R. D. Schafer, A theorem on the derivations of Jordan algebras, Proc. Amer. Math. Soc. 2 (1951), 290 – 294. · Zbl 0043.03804
[15] Eugene Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math. 73 (1951), 453 – 474. · Zbl 0054.01804
[16] J. H. C. Whitehead, Certain equations in the algebra of a semi-simple infinitesimal group, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 220-237. · Zbl 0017.20002
[17] E. Witt, Treue Darstellung Liescher Ringe, Journal für Mathematik vol. 177 (1937) pp. 152-160. · JFM 63.0089.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.