×

zbMATH — the first resource for mathematics

A structure theory of Lie triple systems. (English) Zbl 0046.03404

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Claude Chevalley and R. D. Schafer, The exceptional simple Lie algebras \?\(_{4}\) and \?\(_{6}\), Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 137 – 141. · Zbl 0037.02003
[2] N. Gantmacher, Canonical representation of automorphisms of a semi-simple Lie group, Rec. Math. (Mat. Sbornik) N.S. vol. 5 (1939) p. 101. · Zbl 0022.01201
[3] G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677 – 694. · Zbl 0063.02028
[4] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479 – 502. · Zbl 0039.26402
[5] Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105 – 113. · Zbl 0043.26803
[6] -, Simple Lie algebras over a field of characteristic 0, Duke Math. J. vol. 4 (1938) p. 694.
[7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509 – 530. · Zbl 0044.02503
[8] Eugene Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math. 73 (1951), 453 – 474. · Zbl 0054.01804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.