×

zbMATH — the first resource for mathematics

An arithmetic theory of adjoint plane curves. (English) Zbl 0046.38503

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Claude Chevalley, On the theory of local rings, Ann. of Math. (2) 44 (1943), 690 – 708. · Zbl 0060.06908
[2] Claude Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, No. VI, American Mathematical Society, New York, N. Y., 1951. · Zbl 0045.32301
[3] W. L. Chow, Die geometrische Theorie der algebraischen Funktionen für beliebige vollkommene Körper, Math. Ann. (1937) pp. 656-682. · Zbl 0017.34002
[4] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54 – 106. · Zbl 0060.07001
[5] Enriques-Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, vol. 2, Bologna, 1915. · Zbl 0009.15904
[6] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, Akademische Verlagsgesellschaft, 1923. · JFM 49.0106.10
[7] A. Seidenberg, Valuation ideals in polynomial rings, Trans. Amer. Math. Soc. 57 (1945), 387 – 425. · Zbl 0060.07101
[8] F. Severi, Trattato di geometria algebrica, vol. 1, part I, Bologna, 1926. · JFM 52.0650.01
[9] -, Vorlesungen über algebraischen Geometrie, Leipzig, 1921.
[10] B. L. van der Waerden, Einführung in die algebraische Geometrie, Die Grundlehren der Mathematischen Wissenschaften, Berlin, 1939. · JFM 65.1393.01
[11] Oscar Zariski, Polynomial Ideals Defined by Infinitely Near Base Points, Amer. J. Math. 60 (1938), no. 1, 151 – 204. · Zbl 0018.20101
[12] Oscar Zariski, Foundations of a general theory of birational correspondences, Trans. Amer. Math. Soc. 53 (1943), 490 – 542. · Zbl 0061.33004
[13] Oscar Zariski, Analytical irreducibility of normal varieties, Ann. of Math. (2) 49 (1948), 352 – 361. · Zbl 0037.22701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.