×

zbMATH — the first resource for mathematics

On the existence of certain singular integrals. (English) Zbl 0047.10201

MSC:
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. C. Evans, On potentials of positive masses, Transactions of the American Math. Soc., 37 (1935). · JFM 61.0529.03
[2] K. O. Friedrichs, A theorem of Lichtenstein, Duke Math. Journal, 14, 67–82 (1947). · Zbl 0029.26603 · doi:10.1215/S0012-7094-47-01407-5
[3] G. Fubini andL. Tonelli, Sulla derivata seconda mista di un integrale doppio, Rendiconti circolo Mat. di Palermo, 40, 295–298 (1915). · JFM 45.0450.02 · doi:10.1007/BF03014857
[4] B. Jessen, J. Marcinkiewicz andA. Zygmund, Note on the differentiability of multiple integrals, Fundamenta Math., 25, 217–234 (1935). · Zbl 0012.05901
[5] H. Kober, A note on Hilbert transforms, Journal of the London Math. Soc., 18, 66–71 (1943). · Zbl 0063.03276 · doi:10.1112/jlms/s1-18.2.66
[6] L. Lichtenstein, Über das Poissonsche Integral, Journal für reine und angewandte Mathematik, 141, 12–42 (1912). · JFM 43.0887.01 · doi:10.1515/crll.1912.141.12
[7] A. Zygmund, Trigonometrical Series, Warsaw (1936). · Zbl 0014.11102
[8] N. Aronszajn, Propriétés de certaines classes hilbertiennes complétées, Comptes rendus de l’Académie des Sciences de Paris, 226, 700–702 (1948). · Zbl 0030.36007
[9] M. Riesz, Sur les fonctions conjuguées, Math. Zeitschrift, 27, 218–244 (1927). · JFM 53.0259.02 · doi:10.1007/BF01171098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.