×

zbMATH — the first resource for mathematics

Some characters of the symmetric group. (English) Zbl 0054.01103

MSC:
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Berliner Berichte (1901). · JFM 32.0136.02
[2] -, Über die charakteristischen Einheiten der symmetrischen Gruppe, Berliner Berichte (1903). · JFM 34.0148.02
[3] T. Schur, Über die Darstellung der symmetrischen Gruppe durch lineare homogene Substitutionen, Berliner Berichte (1908). · JFM 39.0196.03
[4] F. D. Murnaghan, On the Representations of the Symmetric Group, Amer. J. Math. 59 (1937), no. 3, 437 – 488. · Zbl 0017.15503 · doi:10.2307/2371574 · doi.org
[5] -, The characters of the symmetric group, Amer. J. Math. vol. 59 (1937).
[6] -, The theory of group representations, Johns Hopkins Press.
[7] J. A. Wheeler, Viewpoints in nuclear structure, Physics Review vol. 52 (1937). · JFM 63.1404.05
[8] E. Wigner, (i) Symmetry of nuclear hamiltonian, Physics Review vol. 52 (1937). · JFM 63.1423.01
[9] -, (ii) On the saturation of exchange forces, Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) p. 662. · Zbl 0015.23604
[10] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
[11] -, Theory of groups and quantum mechanics, Dutton.
[12] G. de B. Robinson, On the Representations of the Symmetric Group, Amer. J. Math. 60 (1938), no. 3, 745 – 760. · JFM 64.0070.01 · doi:10.2307/2371609 · doi.org
[13] -, On the representations of the symmetric group, Amer. J. Math. vol. 60 (1938).
[14] Tadasi Nakayama, On some modular properties of irreducible representations of symmetric groups. II, Jap. J. Math. 17 (1941), 411 – 423. · Zbl 0061.04001
[15] D. E. Littlewood, The theory of group characters, Oxford, 1940. · JFM 66.0093.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.