×

zbMATH — the first resource for mathematics

Projective planes. (English) Zbl 0060.32209

PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Adrian Albert, Structure of algebras, Revised printing. American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961.
[2] Garrett Birkhoff, Combinatorial relations in projective geometries, Ann. of Math. (2) 36 (1935), no. 3, 743 – 748. · JFM 61.0593.01
[3] W. Blaschke and G. Bol Geometrie der Gewebe, Berlin, Springer, 1938. · JFM 64.0727.03
[4] R. D. Carmichael Groups of finite order, Ginn and Co., 1937. · Zbl 0019.19702
[5] E. W. Davis A geometric picture of the fifteen schoolgirls problem, Ann. of Math. vol. 2 pp. 156-157. · JFM 28.0199.02
[6] O. Eckenstein Bibliography of Kirkman’s schoolgirl problem, Messenger of Mathematics vol. 41 (1911) pp. 33-36. · JFM 42.0250.02
[7] Arnold Emch, Triple and multiple systems, their geometric configurations and groups, Trans. Amer. Math. Soc. 31 (1929), no. 1, 25 – 42. · JFM 55.0062.05
[8] Gerhard Hessenberg, Beweis des Desarguesschen Satzes aus dem Pascalschen, Math. Ann. 61 (1905), no. 2, 161 – 172 (German). · JFM 36.0583.02
[9] D. Hilbert Grundlagen der Geometrie, Teubner, 7th edition, 1930. · JFM 56.0481.01
[10] P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), no. 1, 29 – 64. · JFM 60.0902.02
[11] T. P. Kirkman Schoolgirl problem, The Lady’s and Gentleman’s Diary 1850.
[12] A. Kurosch, Ringtheoretische Probleme, die mit dem Burnsideschen Problem über periodische Gruppen in Zusammenhang stehen, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 5 (1941), 233 – 240 (Russian, with German summary). · Zbl 0061.05402
[13] F. Levi Geometrische Konfigurationen, Hirzel, Leipzig, 1929.
[14] D. E. Littlewood Identical relations satisfied in an algebra, Proc. London Math. Soc. (2) vol. 32 (1931) pp. 312-320. · Zbl 0002.01002
[15] K. Menger Bemerkungen zu Grundlagenfragen. IV, Jber. Deutschen Math. Verein vol. 37 (1928) pp. 309-313. · JFM 54.0095.01
[16] Karl Menger, New foundations of projective and affine geometry, Ann. of Math. (2) 37 (1936), no. 2, 456 – 482. In collaboration with Franz Alt and Otto Schreiber. · Zbl 0014.07601
[17] Ruth Moufang, Zur Struktur der projektiven Geometrie der Ebene, Math. Ann. 105 (1931), no. 1, 536 – 601 (German). · Zbl 0002.40605
[18] Ruth Moufang, Die Einführung der idealen Elemente in die ebene Geometrie mit Hilfe des Satzes vom vollständigen Vierseit, Math. Ann. 105 (1931), no. 1, 759 – 778 (German). · Zbl 0003.12601
[19] Ruth Moufang, Die Schnittpunktsätze des projektiven speziellen Fünfecksnetzes in ihrer Abhängigkeit voneinander, Math. Ann. 106 (1932), no. 1, 755 – 795 (German). · Zbl 0004.36202
[20] -Ein Satz über die Schnittpunktsatze des allgemeinen Funfecksnetzes [Das \( \operatorname{Das} (A, B)\)]-Netz], Math. Ann. vol. 107 (1932) pp. 124-139.
[21] Ruth Moufang, Die Desarguesschen Sätze vom Rang 10, Math. Ann. 108 (1933), no. 1, 296 – 310 (German). · Zbl 0006.21704
[22] -Alternativkörper und der Satz vom vollstandigen Vierseit (\( ({D_9})\)), Abh. Math. Sem. Hamburgischen Univ. vol. 9 (1933) pp. 207-222. · Zbl 0007.07205
[23] -Zur Struktur von Alternativkörpern, Math. Ann. vol. 110 (1934) pp. 416-430.
[24] B. H. Neumann, Identical relations in groups. I, Math. Ann. 114 (1937), no. 1, 506 – 525. · Zbl 0016.35102
[25] B. H. Neumann, On the commutativity of addition, J. London Math Soc. 15 (1940), 203 – 208. · Zbl 0027.15401
[26] A. R. Richardson Equations over a division algebra, Messenger of Mathematics vol. 57 (1928) pp. 1-6.
[27] A. Speiser Theorie der Gruppen von endlicher Ordnung, 2nd edition (1927), J. Springer, Berlin. · JFM 53.0104.12
[28] K. G. C. von Staudt Beitrage zur Geometrie der Lage, vol. 2, 1857.
[29] G. Thomsen Grundlagen der Elementargeometrie, Leipzig, 1933. · Zbl 0007.36103
[30] O. Veblen and J. H. Maclagan-Wedderburn, Non-Desarguesian and non-Pascalian geometries, Trans. Amer. Math. Soc. 8 (1907), no. 3, 379 – 388. · JFM 38.0502.01
[31] O. Veblen and J. W. Young Projective geometry, vol. I, Ginn and Co., 1910. · JFM 41.0606.06
[32] Walter Wagner, Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme, Math. Ann. 113 (1937), no. 1, 528 – 567 (German). · Zbl 0015.17002
[33] M. Zorn Theorie der alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ. vol. 8 (1930) pp. 123-147. · JFM 56.0140.01
[34] -Alternativkörper und quadratische Systeme, Abh. Math. Sem. Hamburgischen Univ. vol. 9 (1933) pp. 395-402. · JFM 59.0154.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.