×

zbMATH — the first resource for mathematics

Recursive predicates and quantifiers. (English) Zbl 0063.03259
Not reviewed

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer. J. Math. 58 (1936), no. 2, 345 – 363. · Zbl 0014.09802 · doi:10.2307/2371045 · doi.org
[2] Alonzo Church, The constructive second number class, Bull. Amer. Math. Soc. 44 (1938), no. 4, 224 – 232. · Zbl 0018.33803
[3] Alonzo Church and S. C. Kleene. 1. Formal definitions in the theory of ordinal numbers, Fund. Math. vol. 28 (1936) pp. 11-21. · Zbl 0016.00201
[4] Alonzo Church and J. B. Rosser, Some properties of conversion, Trans. Amer. Math. Soc. 39 (1936), no. 3, 472 – 482. · Zbl 0014.38504
[5] Haskell B. Curry, Some aspects of the problem of mathematical rigor, Bull. Amer. Math. Soc. 47 (1941), 221 – 242. · Zbl 0025.00304
[6] Haskell B. Curry, The inconsistency of certain formal logics, J. Symbolic Logic 7 (1942), 115 – 117. · Zbl 0060.02209 · doi:10.2307/2269292 · doi.org
[7] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173 – 198 (German). · JFM 57.0054.02 · doi:10.1007/BF01700692 · doi.org
[8] -On undecidable propositions of formal mathematical systems, notes of lectures at the Institute for Advanced Study, 1934.
[9] David Hilbert and Paul Bernays 1. Grundlagen der Mathematik, vol. 2, Berlin, Springer, 1939. · Zbl 0020.19301
[10] Arend Heyting 1. Die formalen Regeln der intuitionistischen Mathematik, Preuss. Akad. Wiss. Sitzungsber, Phys.-math. Kl. 1930, pp. 57-71, 1. 158-169. · JFM 56.0823.01
[11] S. C. Kleene, A Theory of Positive Integers in Formal Logic. Part I, Amer. J. Math. 57 (1935), no. 1, 153 – 173. · Zbl 0011.00202 · doi:10.2307/2372027 · doi.org
[12] S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), no. 1, 727 – 742. · Zbl 0014.19402 · doi:10.1007/BF01565439 · doi.org
[13] S. C. Kleene, A note on recursive functions, Bull. Amer. Math. Soc. 42 (1936), no. 8, 544 – 546. · Zbl 0015.05002
[14] -On notation for ordinal numbers, J. Symbolic Logic vol. 3 (1938) pp. 150-155. · Zbl 0020.33803
[15] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41 – 58. · Zbl 0061.01003 · doi:10.2307/2371894 · doi.org
[16] -On the interpretation of intuitionislic number theory, Bull. Amer. Math. Soc. abstract 48-1-85.
[17] S. C. Kleene and J. B. Rosser, The inconsistency of certain formal logics, Ann. of Math. (2) 36 (1935), no. 3, 630 – 636. · Zbl 0012.14602 · doi:10.2307/1968646 · doi.org
[18] David Nelson 1. Recursive functions and intuitionislic number theory, under preparation.
[19] L. Post 1. Finite combinatory processes–formulation I, J. Symbolic Logic vol. 1 (1936) pp. 103-105. · JFM 62.1060.01
[20] Willard Van Orman Quine, Mathematical Logic, W. W. Norton & Co., Inc., New York, 1940. · Zbl 0063.06360
[21] Barkley Rosser Extensions of some theorems of Gödel and Church, J. Symbolic Logic vol. 1 (1936) pp. 87-91. · JFM 62.1058.03
[22] -Goödel theorems for non-constructive logics, ibid. vol. 2 (1937) pp. 129-137. · Zbl 0017.24202
[23] Alfred Tarski Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica vol. 1 (1936) pp. 261-405. (Original in Polish, 1933.)
[24] Alfred Tarski, On undecidable statements in enlarged systems of logic and the concept of truth, J. Symbolic Logic 4 (1939), 105 – 112. · Zbl 0021.38504 · doi:10.2307/2266444 · doi.org
[25] A. M. Turing On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. (2) vol. 42 (1937) pp. 230-265. · Zbl 0016.09701
[26] -Systems of logic based on ordinals, ibid. vol. 45 (1939) pp. 161-228. · Zbl 0021.09704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.