×

Higher transcendental functions. Vol. III. (English) Zbl 0064.06302

Bateman Manuscript Project, California Institute of Technology. New York: McGraw-Hill Book Co., XVII, 292 p. (1955).

Digital Library of Mathematical Functions:

§10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§27.2(i) Definitions ‣ §27.2 Functions ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory
Chapter 27 Functions of Number Theory
§28.10(iii) Further Equations ‣ §28.10 Integral Equations ‣ Mathieu Functions of Integer Order ‣ Chapter 28 Mathieu Functions and Hill’s Equation
Table 28.1.1 ‣ §28.1 Special Notation ‣ Notation ‣ Chapter 28 Mathieu Functions and Hill’s Equation
§28.2(iii) Floquet’s Theorem and the Characteristic Exponents ‣ §28.2 Definitions and Basic Properties ‣ Mathieu Functions of Integer Order ‣ Chapter 28 Mathieu Functions and Hill’s Equation
§28.2(v) Eigenvalues a n , b n ‣ §28.2 Definitions and Basic Properties ‣ Mathieu Functions of Integer Order ‣ Chapter 28 Mathieu Functions and Hill’s Equation
§29.10 Lamé Functions with Imaginary Periods ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.11 Lamé Wave Equation ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.14 Orthogonality ‣ Lamé Polynomials ‣ Chapter 29 Lamé Functions
§29.17(iii) Lamé–Wangerin Functions ‣ §29.17 Other Solutions ‣ Lamé Polynomials ‣ Chapter 29 Lamé Functions
§29.17(i) Second Solution ‣ §29.17 Other Solutions ‣ Lamé Polynomials ‣ Chapter 29 Lamé Functions
§29.18(iii) Spherical and Ellipsoidal Harmonics ‣ §29.18 Mathematical Applications ‣ Applications ‣ Chapter 29 Lamé Functions
§29.18(ii) Ellipsoidal Coordinates ‣ §29.18 Mathematical Applications ‣ Applications ‣ Chapter 29 Lamé Functions
§29.18(iii) Spherical and Ellipsoidal Harmonics ‣ §29.18 Mathematical Applications ‣ Applications ‣ Chapter 29 Lamé Functions
§29.18(i) Sphero-Conal Coordinates ‣ §29.18 Mathematical Applications ‣ Applications ‣ Chapter 29 Lamé Functions
§29.1 Special Notation ‣ Notation ‣ Chapter 29 Lamé Functions
§29.2(ii) Other Forms ‣ §29.2 Differential Equations ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.2(i) Lamé’s Equation ‣ §29.2 Differential Equations ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.3(ii) Distribution ‣ §29.3 Definitions and Basic Properties ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.3(i) Eigenvalues ‣ §29.3 Definitions and Basic Properties ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.3(ii) Distribution ‣ §29.3 Definitions and Basic Properties ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.3(iv) Lamé Functions ‣ §29.3 Definitions and Basic Properties ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.5 Special Cases and Limiting Forms ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.6(iii) Function Es + ⁢ 2 m 1 ν ( z , k 2 ) ‣ §29.6 Fourier Series ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.6(ii) Function Ec + ⁢ 2 m 1 ν ( z , k 2 ) ‣ §29.6 Fourier Series ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.6(i) Function Ec ⁢ 2 m ν ( z , k 2 ) ‣ §29.6 Fourier Series ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.6(iv) Function Es + ⁢ 2 m 2 ν ( z , k 2 ) ‣ §29.6 Fourier Series ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.8 Integral Equations ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
§29.8 Integral Equations ‣ Lamé Functions ‣ Chapter 29 Lamé Functions
Chapter 29 Lamé Functions
§30.10 Series and Integrals ‣ Properties ‣ Chapter 30 Spheroidal Wave Functions
§30.11(v) Connection with the Ps and Qs Functions ‣ §30.11 Radial Spheroidal Wave Functions ‣ Properties ‣ Chapter 30 Spheroidal Wave Functions
§30.11(vi) Integral Representations ‣ §30.11 Radial Spheroidal Wave Functions ‣ Properties ‣ Chapter 30 Spheroidal Wave Functions
§30.13(i) Prolate Spheroidal Coordinates ‣ §30.13 Wave Equation in Prolate Spheroidal Coordinates ‣ Applications ‣ Chapter 30 Spheroidal Wave Functions
§30.14(i) Oblate Spheroidal Coordinates ‣ §30.14 Wave Equation in Oblate Spheroidal Coordinates ‣ Applications ‣ Chapter 30 Spheroidal Wave Functions
§30.1 Special Notation ‣ Notation ‣ Chapter 30 Spheroidal Wave Functions
§30.9(iii) Other Approximations and Expansions ‣ §30.9 Asymptotic Approximations and Expansions ‣ Properties ‣ Chapter 30 Spheroidal Wave Functions
Chapter 30 Spheroidal Wave Functions
§31.2(i) Heun’s Equation ‣ §31.2 Differential Equations ‣ Properties ‣ Chapter 31 Heun Functions
§31.4 Solutions Analytic at Two Singularities: Heun Functions ‣ Properties ‣ Chapter 31 Heun Functions
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials ‣ Properties ‣ Chapter 31 Heun Functions
Chapter 31 Heun Functions