×

zbMATH — the first resource for mathematics

Monotone and convex operator functions. (English) Zbl 0064.36901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Serge Bernstein, Sur la définition et les propriétés des fonctions analytiques d’une variable réelle, Math. Ann. 75 (1914), no. 4, 449 – 468 (French). · JFM 45.0635.03
[2] R. P. Boas Jr., Functions with positive derivatives, Duke Math. J. 8 (1941), 163 – 172. · JFM 67.0192.01
[3] O. Brune, Synthesis of a finite two-terminal network whose driving point impedance is a prescribed function of frequency, Journal of Mathematics and Physics vol. 10 (1931) pp. 191-236. · Zbl 0003.08503
[4] Wilhelm Cauer, Untersuchungen über ein Problem, das drei positiv definite quadratische Formen mit Streckenkomplexen in Beziehung setzt, Math. Ann. 105 (1931), no. 1, 86 – 132 (German). · Zbl 0002.22101
[5] O. Dobsch, Matrixfunktionen beschränkter Schwankung, Math. Zeit. vol. 43 (1937) pp. 353-388. · Zbl 0018.11801
[6] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. · Zbl 0962.46013
[7] Erhard Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415 – 438 (German). · Zbl 0043.32603
[8] Fritz Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), no. 1, 18 – 42 (German). · Zbl 0013.39701
[9] K. Löwner, Über monotone Matrixfunktionen, Math. Zeit. vol. 38 (1934) pp. 177-216. · Zbl 0008.11301
[10] Charles Loewner, Some classes of functions defined by difference or differential inequalities, Bull. Amer. Math. Soc. 56 (1950), 308 – 319. · Zbl 0041.18202
[11] B. Nagy, Spectraldarstellung linearen Transformationen des Hilbertschen Raumes, Berlin, Springer, 1942.
[12] Paul I. Richards, A special class of functions with positive real part in a half-plane, Duke Math. J. 14 (1947), 777 – 786. · Zbl 0029.25705
[13] M. S. Robertson, On the coefficients of a typically-real function, Bull. Amer. Math. Soc. 41 (1935), no. 8, 565 – 572. · Zbl 0012.21201
[14] M. S. Robertson, Analytic Functions Star-Like in One Direction, Amer. J. Math. 58 (1936), no. 3, 465 – 472. · Zbl 0014.12002
[15] Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93 – 121 (German). · Zbl 0003.39303
[16] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. · Zbl 0063.06973
[17] David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. · Zbl 0063.08245
[18] E. P. Wigner and L. Eisenbud, Higher angular momenta and long range interaction in resonance reactions, Physical Review vol. 72 (1947) pp. 29-41.
[19] E. P. Wigner, Nuclear reactions and level widths, American Journal of Physics vol. 17 (1949) pp. 99-109.
[20] Eugene P. Wigner, On a class of analytic functions from the quantum theory of collisions, Ann. of Math. (2) 53 (1951), 36 – 67. · Zbl 0042.45205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.