×

zbMATH — the first resource for mathematics

Local behavior of solutions of general linear elliptic equations. (English) Zbl 0066.08101

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bers, Proc. Nat. Acad. Sci., U. S.A. 36 pp 130– (1950)
[2] Proc. Nat. Acad. Sci., U. S.A. VoI. 37 pp 42– (1951)
[3] Theory of pseudo-analytic functions. Lecture notes (mimeographed), New York University, 1953.
[4] Function-theoretical properties of solutions of partial differential equations of elliptic type, Annals of Mathematics Study No. 33, Princeton University Press, pp. 69–93.
[5] Local theory of pseudo-analytic functions, Lectures on Functions of a Complex Variable, ed. by Ann Arbor, 1955, pp. 213–244.
[6] Bers, Remark on an application of pseudo-analytic functions
[7] and , On a representation theorem for linear elliptic systems with discontinuous coefficients and its application, Convegno Internazionale sulle Equazioni Derivate e Parziali, August 1954, pp. 111–140.
[8] Carleman, C. R. Acad. Sci. Paris 197 pp 471– (1933)
[9] and , Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. (this issue).
[10] Hartman, Amer. J. Math. 75 pp 449– (1953)
[11] Hartman, Amer. J. Math. 76 pp 351– (1954)
[12] Über die Eideutigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachrichten Goettingen, 1955. No. 1, pp. 1–12 · Zbl 0067.07503
[13] Hopf, Math. Z. 34 pp 191– (1931)
[14] John, Comm. Pure Appl. Math. 3 pp 273– (1950)
[15] Plane waves and spherical means in the theory of partial differential equations, Tracts on Pure and Applied Mathematics, No. 2, Interscience, New York (to appear.)
[16] Morrey, Trans. Amer. Math. Soc. 43 pp 126– (1938)
[17] Zwei Anwendungen der Methode der sukzessiven Annäherungen, Schwarz Festschrift, 1914, pp. 215–229.
[18] Miiller, Comm. Pure Appl. Math. 7 pp 505– (1954)
[19] Schauder, Math. Z. 34 pp 623– (1933)
[20] Schauder, Math. Z. 38 pp 257– (1934)
[21] Vekua, Mat. Sbornik 31 pp 217– (1952)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.