×

zbMATH — the first resource for mathematics

Hierarchies of numer-theoretic predicates. (English) Zbl 0066.25901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. E. J. Brouwer, Beweis, dass jede volle Funktion gleichmässig stetig ist, Neder. Akad. Wetensch. vol. 27 (1924) pp. 189-193.
[2] L. E. J. Brouwer, Über Definitionsbereiche von- Funktionen, Math. Ann. 97 (1927), no. 1, 60 – 75 (German). · JFM 52.0239.01
[3] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer. J. Math. 58 (1936), no. 2, 345 – 363. · Zbl 0014.09802
[4] A. Church, The constructive second number class, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 224-232. · Zbl 0018.33803
[5] A. Church and S. C. Kleene, Formal definitions in the theory of ordinal numbers, Fund. Math. vol. 28 (1936) pp. 11-21. · Zbl 0016.00201
[6] M. Davis, On the theory of recursive unsolvability, Thesis, Princeton, 1950.
[7] M. Davis, Relatively recursive functions and the extended Kleene hierarchy, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Providence, American Mathematical Society, 1952, vol. 1, p. 723.
[8] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173 – 198 (German). · JFM 57.0054.02
[9] K. Gödel, On undecidable propositions of formal mathematical systems, Notes on lectures at the Institute for Advanced Study, mimeographed, Princeton, 1934, 30 pp.
[10] S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), no. 1, 727 – 742. · Zbl 0014.19402
[11] S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic vol. 3 (1938) pp. 150-155. · Zbl 0020.33803
[12] S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41 – 73. · Zbl 0063.03259
[13] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41 – 58. · Zbl 0061.01003
[14] S. C. Kleene, A symmetric form of Gödel’s theorem, Nederl. Akad. Wetensch., Proc. 53 (1950), 800 – 802 = Indagationes Math. 12, 244 – 246 (1950). · Zbl 0038.03101
[15] S. C. Kleene, Recursive functions and intuitionistic mathematics, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R. I., 1952, pp. 679 – 685.
[16] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. · Zbl 0047.00703
[17] S. C. Kleene, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312 – 340. · Zbl 0066.25703
[18] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41 – 58. · Zbl 0061.01003
[19] S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379 – 407. · Zbl 0057.24703
[20] G. Kreisel, On the interpretation of non-finitist proofs. I, J. Symbolic Logic 16 (1951), 241 – 267. · Zbl 0044.00302
[21] G. Kreisel, A variant to Hilbert’s theory of the foundations of arithmetic, British J. Philos. Sci. 4 (1953), 107 – 129 errata and corrigenda, 357 (1954).
[22] Andrzej Mostowski, On definable sets of positive integers, Fund. Math. 34 (1947), 81 – 112. · Zbl 0031.19401
[23] A. Mostowski, A classification of logical systems, Studia Philosophica vol. 4 (1951) pp. 237-274. · Zbl 0045.29404
[24] E. L. Post, Finite combinatory processes-formulation I, J. Symbolic Logic vol. 1 (1936) pp. 103-105. · JFM 62.1060.01
[25] Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284 – 316. · Zbl 0063.06328
[26] E. L. Post, Degrees of recursive unsolvability, Bull. Amer. Math. Soc. Abstract 54-7-269.
[27] T. Skolem, Über die Zurückführbarkeit einiger durch Rekursionen definierten Relationen auf ”arithmetische,” Acta Sci. Math. Szeged vol. 8 (1936-37) pp. 73-88. · JFM 63.0025.01
[28] Clifford Spector, Recursive well-orderings, J. Symb. Logic 20 (1955), 151 – 163. · Zbl 0067.00303
[29] Alfred Tarski, Einige Betrachtungen über die Begriffe der \?-Widerspruchsfreiheit und der \?-Vollständigkeit, Monatsh. Math. Phys. 40 (1933), no. 1, 97 – 112 (German). · Zbl 0007.09703
[30] A. M. Turing, On computable numbers, with an application to the Entscheidungs-problem, Proc. London Math. Soc. (2) vol. 42 (1936-37) pp. 230-265. A correction, ibid. vol. 43 (1937) pp. 544-546. · Zbl 0018.19304
[31] A. M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. (2) vol. 45 (1939) pp. 161-228. · Zbl 0021.09704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.