×

zbMATH — the first resource for mathematics

A probability approach to the heat equation. (English) Zbl 0068.32705

PDF BibTeX Cite
Full Text: DOI
References:
[1] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[2] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86 – 121. · Zbl 0059.12205
[3] J. L. Doob, Martingales and one-dimensional diffusion, Trans. Amer. Math. Soc. 78 (1955), 168 – 208. · Zbl 0068.11301
[4] Robert Fortet, Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux dérivées partielles du type parabolique, J. Math. Pures Appl. (9) 22 (1943), 177 – 243 (French). · Zbl 0063.01414
[5] Philip Hartman and Aurel Wintner, On the solutions of the equation of heat conduction, Amer. J. Math. 72 (1950), 367 – 395. · Zbl 0038.25801
[6] I. Petrowsky, Zur ersten Randwertaufgabe der Wärmeleitungsgleichung, Compositio Math. 1 (1935), 383 – 419 (German). · Zbl 0010.29903
[7] D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85 – 95. · Zbl 0061.22303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.