×

zbMATH — the first resource for mathematics

Zur Differentialgeometrie der komplexen Strukturen. (German) Zbl 0068.35904

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Eckmann, B.: ?Complex-analytic manifolds?. Proceedings of the International Congress of Mathematicians 1950, Vol. II, p. 420-427.
[2] Hopf, H.: ?Zur Topologie der komplexen Mannigfaltigkeiten?. Studies and essays presented to R. Courant, p. 167-185. New York 1948.
[3] Ehresmann, Ch.: “Sur la théorie des espaces fibrés”. Colloque de Topologie Algébrique, C.N.R.S., p. 3-15. Paris 1947.
[4] Ehresmann, Ch., etP. Libermann: “Sur les structures presque hermitiennes isotropes”. C. R. Acad. Sci. (Paris)232, 1281-1283 (1951). · Zbl 0042.15904
[5] Eckmann, B., etA. Frölicher: “Sur l’intégrabilité des structures presque complexes”. C. R. Acad. Sci. (Paris)232, 2284-2286 (1951). · Zbl 0042.40503
[6] Wang, H. C.: ?Closed manifolds with homogeneous complex structure?. Amer. J. Math.76, 1-32 (1954). · Zbl 0055.16603 · doi:10.2307/2372397
[7] Eckmann, B.: “Structures complexes et transformations infinitésimales”. Convegno di Geometria Differenziale, 1953. Roma: Edizioni Cremonese 1954, 1-9. · Zbl 0053.11903
[8] Eckmann, B.: “Sur les structures complexes et presque complexes”. Colloque de Géométrie Différentielle, C. N. R. S., p. 151-159. Strasbourg 1953.
[9] Hodge, W. V. D.: ?Structure problems for complex manifolds?. Rendiconti di Matematica e delle sue applicazioni, Serie V, Vol. XI, p. 1-10. Roma 1952. · Zbl 0046.40003
[10] Chevalley, C.: ?Theory of Lie Groups?. Princeton University Press 1946. · Zbl 0063.00842
[11] Steenrod, N.: ?The Topology of Fibre Bundles?. Princeton University Press 1951. · Zbl 0054.07103
[12] Bochner, S., andD. Montgomery: ?Locally compact groups of differentiable transformations?. Ann. of Math.47, 639-653 (1946). · Zbl 0061.04407 · doi:10.2307/1969226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.