×

zbMATH — the first resource for mathematics

Degrees of computability. (English) Zbl 0070.24602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alonzo Church, The Calculi of Lambda-Conversion, Annals of Mathematics Studies, no. 6, Princeton University Press, Princeton, N. J., 1941. · Zbl 0026.24205
[2] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer. J. Math. 58 (1936), no. 2, 345 – 363. · Zbl 0014.09802 · doi:10.2307/2371045 · doi.org
[3] Martin Davis, On the theory of recursive unsolvability, unpublished.
[4] G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, Oxford, Oxford Press, 1945. · Zbl 0020.29201
[5] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. · Zbl 0047.00703
[6] Werner Markwald, Zur Theorie der konstruktiven Wohlordnungen, Math. Ann. 127 (1954), 135 – 149 (German). · Zbl 0056.04701 · doi:10.1007/BF01361115 · doi.org
[7] Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284 – 316. · Zbl 0063.06328
[8] H. G. Rice, Classes of recursively enumerable sets and their decision problems, Trans. Amer. Math. Soc. 74 (1953), 358 – 366. · Zbl 0053.00301
[9] H. G. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784 – 791. · Zbl 0058.00602
[10] Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd ed. · Zbl 0035.00602
[11] Alan M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. (2) vol. 45 (1939) pp. 161-228. · JFM 65.1102.02
[12] -, On computable numbers with an application to the Entscheidungsproblem, Proc. London Math. Soc. (2) vol. 42 (1936) pp. 230-265. · JFM 62.1059.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.