×

zbMATH — the first resource for mathematics

On functions subharmonic in a half-space. (English) Zbl 0070.30501

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lars V. Ahlfors, On Phragmén-Lindelöf’s principle, Trans. Amer. Math. Soc. 41 (1937), no. 1, 1 – 8. · Zbl 0016.03204
[2] Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. · Zbl 0058.30201
[3] M. Brelot, Étude des fonctions sousharmoniques au voisinage d’un point, Actualités Scientifiques et Industrielles, no. 139, Paris, Hermann, 1934. · Zbl 0009.01902
[4] Marcel Brelot, Étude des fonctions sous-harmoniques au voisinage d’un point singulier, Ann. Inst. Fourier Grenoble 1 (1949), 121 – 156 (1950) (French). · Zbl 0036.06901
[5] A. Dinghas, Ueber das Phragmén-Lindelöfsche Prinzip und den Julia-Carathéodoryschen Satz, Preuss. Akad. Wiss. Sitzungsber. (1938) pp. 32-48. · JFM 64.0301.02
[6] Alexander Dinghas, Über positive harmonische Funktionen in einem Halbraum, Math. Z. 46 (1940), 559 – 570 (German). · Zbl 0023.14203
[7] J. L. Doob and B. O. Koopman, On analytic functions with positive imaginary parts, Bull. Amer. Math. Soc. 40 (1934), no. 8, 601 – 605. · JFM 60.0254.03
[8] Maurice Heins, On the Phragmén-Lindelöf principle, Trans. Amer. Math. Soc. 60 (1946), 238 – 244. · Zbl 0060.22106
[9] Jacqueline Lelong-Ferrand, Sur le principe de Julia-Carathéodory et son extension à l’espace à \?-dimensions, Bull. Sci. Math. (2) 73 (1949), 5 – 16 (French). · Zbl 0041.22302
[10] L. H. Loomis and D. V. Widder, The Poisson integral representation of functions which are positive and harmonic in a half-plane, Duke Math. J. 9 (1942), 643 – 645. · Zbl 0061.23304
[11] Albert Pfluger, À propos d’un mémoire récent de M. Brelot, Ann. Inst. Fourier Grenoble 2 (1950), 81 – 82 (1951) (French). · Zbl 0042.33603
[12] F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, parts I and II, Acta Math. vol. 48 (1926) pp. 329-343 and vol. 54 (1930) pp. 321-360. · JFM 52.0497.05
[13] M. Riesz, Sur certaines inégalités dans la théorie des fonctions avec quelques remarques sur les géométries non-euclidiennes, Kungl. Fysiogr. Sällsk. Lund För. vol. 1 (1938). · JFM 57.0347.03
[14] M. Tsuji, On a positive harmonic function in a half-plane, Jap. J. Math. vol. 15 (1938) pp. 277-285. · JFM 65.1239.01
[15] S. Verblunsky, On positive harmonic functions in a half-plane, Proc. Cambridge Philos. Soc. vol. 31 (1935) pp. 482-507. · JFM 61.0523.02
[16] Alexander Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1948), 342 – 354. · Zbl 0038.26204
[17] Alexander Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20 – 38. · Zbl 0053.25303
[18] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge, 1927. · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.