×

zbMATH — the first resource for mathematics

The Pi theorem of dimensional analysis. (English) Zbl 0078.37301

Keywords:
Physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Buckingham, E.: On Physically Similar Systems: Illustrations of the Use of Dimensional Equations. Phys. Rev. 4, No. 4, 345 (1914). · doi:10.1103/PhysRev.4.345
[2] Bridgman, P. W.: Dimensional Analysis, p. 43. Yale Univ. Press 1922. – Langhaar, H. L.: Dimensional Analysis and Theory of Models, chap. 4. Wiley 1951.
[3] Bridgman, P. W.: Op. cit. Dimensional Analysis, Yale Univ. Press 1922 p. 38.
[4] Langhaar, H. L.: Op. cit. Dimensional Analysis and Theory of Models, chap. 4. Wiley 1951, p. 56. · Zbl 0045.26205
[5] Drobot, S.: On the Foundations of Dimensional Analysis. Studia Mathematica 14, fasc. 1, 84–99 (1953). · Zbl 0052.40901
[6] Drobot, S.: loc. cit. On the Foundations of Dimensional Analysis. Studia Mathematica 14, fasc. 1, 84–99 (1953), part III. · Zbl 0052.40901
[7] Birkhoff, Garrett: Hydrodynamics, Chap. 3. Princeton Univ. Press 1950.
[8] Drobot, S.: loc. cit. On the Foundations of Dimensional Analysis. Studia Mathematica 14, fasc. 1, 84–99 (1953), part III. · Zbl 0052.40901
[9] Bridgman, P. W.: Op. cit. Dimensional Analysis, Yale Univ. Press 1922, p. 10–11. – Esnault-Pelterie, R.: Op. cit., Ex. 8, p. 217. – Drobot, S.: loc. cit., part vii.
[10] Esnault-Pelterie, R.: Dimensional Analysis. Lausanne 1950.
[11] Bridgman, P. W.: Op. cit. Dimensional Analysis, Yale Univ. Press 1922, p. 9–11. – Drobot, S.: loc. cit., part vii. – Lord Rayleigh: Nature 15, 66 (1915).
[12] Lord Rayleigh: Nature 15, 644 (1915).
[13] Drobot, S.: loc. cit. On the Foundations of Dimensional Analysis. Studia Mathematica 14, fasc. 1, 84–99 (1953), part vii. · Zbl 0052.40901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.